Skip to main content
Log in

Bamboo-Inspired Gasotransmitter Microfibres for Wound Healing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Diabetic wounds have become a major clinical problem that cannot be ignored. Gases, such as hydrogen sulphide (H2S), have demonstrated value in inducing angiogenesis and accelerating wound healing, while their effective delivery is still challenging. Here, inspired by the continuous-independent hollow structure of bamboo, we propose novel gasotransmitter microfibres with septal H2S bubbles using microfluidic spinning for diabetic wound healing. Benefitting from the exact control of microfluidics, gasotransmitter microfibres with different bubble sizes and morphologies could be generated successfully and continuously. Under the dual effects of drugs in the shell and gas in the core, the wound healing process could be accelerated. Furthermore, the controllable release of drugs could be achieved by adding responsive materials into the microfiber shell, which would promote continuous effects of contents on demand. Based on in vitro and in vivo studies, we have proven that these gasotransmitter microfibres have a positive impact on inducing angiogenesis and promoting cell proliferation during wound healing. Thus, it is believed that the bamboo-inspired gasotransmitter microfibres will have important value in gasotransmitter research and clinical applications.

Graphical Abstract

The bamboo-inspired microfibres are presented through microfluidics with features of independent chambers for storing and controlled release of hydrogen sulphide (H2S) to the diabetic wound. Even if it is partially damaged, it will not affect the overall gas storage and utilization. Thus, it contributes to improvements in basic research and the transformation of gasotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availbility

The data that support the findings of this study are available from the authors, upon reasonable request.

References

  1. Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater 2021;33(39):e2100176.

    Article  Google Scholar 

  2. Matoori S, Veves A, Mooney D. Advanced bandages for diabetic wound healing. Sci Transl Med 2021;13(585):eabe4839.

    Article  CAS  Google Scholar 

  3. Liu XT, Liu YM, Du JT, Li XR, Yu JY, Ding B. Breathable, stretchable and adhesive nanofibrous hydrogels as wound dressing materials. Eng Regen 2021;2:63–9.

    Google Scholar 

  4. da Silva LP, Reis RL, Correlo VM, Marques AP. A hydrogel-based strategies to advance therapies for chronic skin wounds. Annu Rev Biomed Eng 2019;21:145–69.

    Article  Google Scholar 

  5. Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol 2019;21:18–24.

    Article  CAS  Google Scholar 

  6. Hosseini M, Shafiee A. Engineering bioactive scaffolds for skin regeneration. Small 2021;17(41):e2101384.

    Article  Google Scholar 

  7. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019;146:97–125.

    Article  CAS  Google Scholar 

  8. Chang M, Nguyen TT. Strategy for treatment of infected diabetic foot ulcers. Acc Chem Res 2021;54:1080–93.

    Article  CAS  Google Scholar 

  9. Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020;49(14):5008–57.

    Article  CAS  Google Scholar 

  10. Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation—an update. J Adv Res 2021;27:85–97.

    Article  CAS  Google Scholar 

  11. Tian D, Teng X, Jin S, Chen Y, Xue H, Xiao L, Wu Y. Endogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signaling. J Adv Res 2021;27:115–25.

    Article  CAS  Google Scholar 

  12. Zhao H, Lu S, Chai J, Zhang Y, Ma X, Chen J, Guan Q, Wan M, Liu Y. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation. J Diabetes Complicat 2017;31(9):1363–9.

    Article  Google Scholar 

  13. Liu F, Chen DD, Sun X, Xie HH, Yuan H, Jia W, Chen AF. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes 2014;63(6):1763–78.

    Article  CAS  Google Scholar 

  14. Wu J, Chen A, Zhou Y, Zheng S, Yang Y, An Y, Xu K, He H, Kang J, Luckanagul JA, Xian M, Xiao J, Wang Q. Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages. Biomaterials 2019;222:119398.

    Article  CAS  Google Scholar 

  15. Zhao X, Liu L, An T, Xian M, Luckanagul JA, Su Z, Lin Y, Wang Q. A hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomater 2020;104:85–94.

    Article  CAS  Google Scholar 

  16. Dakhchoune M, Villalobos LF, Semino R, Liu L, Rezaei M, Schouwink P, Avalos CE, Baade P, Wood V, Han Y, Ceriotti M, Agrawal KV. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat Mater 2021;20(3):362–9.

    Article  CAS  Google Scholar 

  17. Kang J, Li Z, Organ CL, Park CM, Yang CT, Pacheco A, Wang D, Lefer DJ, Xian M. pH-Controlled hydrogen sulfide release for myocardial ischemia-reperfusion injury. J Am Chem Soc 2016;138(20):6336–9.

    Article  CAS  Google Scholar 

  18. Safonov M, You J, Lee J, Safonov VL, Berman D, Zhu D. Hydrogen generating patch improves skin cell viability, migration activity, and collagen expression. Eng Reg 2020;1:1–5.

    Google Scholar 

  19. Guo J, Yu Y, Wang H, Zhang H, Zhang X, Zhao Y. Conductive polymer hydrogel microfibers from multiflow microfluidics. Small 2019;15(15):e1805162.

    Article  Google Scholar 

  20. Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc 2018;13(11):2557–79.

    Article  CAS  Google Scholar 

  21. Guo J, Yu Y, Zhang D, Zhang H, Zhao Y. Morphological hydrogel microfibers with MXene encapsulation for electronic skin. Research 2021;2021:7065907.

    Article  CAS  Google Scholar 

  22. Meng LL, Zhang M, Deng HH, Xu BJ, Wang HQ, Wang YJ, Jiang L, Liu H. Direct-Writing large-area cross-aligned Ag nanowires network: toward high-performance transparent quantum dot light-emitting diodes. CCS Chem 2021;3(8):2194–202.

    Article  CAS  Google Scholar 

  23. Ji XF, Li Z, Hu YB, Xie HL, Wu WJ, Song FY, Liu HX, Jiang MJ, Lam JWY, Tang BZ. Bioinspired hydrogels with muscle-like structure for AIEgen-guided selective self-healing. CCS Chem 2021;3(4):1146–56.

    Article  CAS  Google Scholar 

  24. Li YJ, Ding YQ, Yang B, Cao TY, Xu JF, Dong YC, Chen Q, Xu LJ, Liu DS. Reinforcing DNA supramolecular hydrogel with polymeric multiple-unit linker. CCS Chem 2022. https://doi.org/10.31635/ccschem.022.202101523 .

    Article  Google Scholar 

  25. Aleman J, Kilic T, Mille LS, Shin SR, Zhang YS. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc 2021;16(5):2564–93.

    Article  CAS  Google Scholar 

  26. Zhang X, Wang Z, Zhang YS, Yan S, Hou C, Gong Y, Qiu J, Chen M, Li Q. Studying endothelial cell shedding and orientation using adaptive perfusion-culture in a microfluidic vascular chip. Biotechnol Bioeng 2021;118(2):963–78.

    Article  CAS  Google Scholar 

  27. Yu Y, Guo J, Sun L, Zhang X, Zhao Y. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics. Research 2019;2019:6906275.

    Article  CAS  Google Scholar 

  28. Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Bioinspired helical microfibers from microfluidics. Adv Mater 2017. https://doi.org/10.1002/adma.201605765 .

    Article  Google Scholar 

  29. Zhao C, Chen G, Wang H, Zhao Y, Chai R. Bio-inspired intestinal scavenger from microfluidic electrospray for detoxifying lipopolysaccharide. Bioact Mater 2020;6(6):1653–62.

    Article  Google Scholar 

  30. Liang XC, Kumar V, Ahmadi F, Zhu YY. Manipulation of droplets and bubbles for thermal applications. Droplet 2022. https://doi.org/10.1002/dro2.21 .

    Article  Google Scholar 

  31. Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021;174:504–34.

    Article  CAS  Google Scholar 

  32. Wang Y, Lu L, Zheng G, Zhang X. Microenvironment-Controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies. ACS Nano 2020;14(8):9861–72.

    Article  CAS  Google Scholar 

  33. Wang P, Bian R, Meng Q, Liu H, Jiang L. Bioinspired dynamic wetting on multiple fibers. Adv Mater 2017;29(45):1703042.

    Article  Google Scholar 

  34. Wang P, Zhou J, Xu B, Lu C, Meng Q, Liu H. Bioinspired anti-Plateau-Rayleigh-instability on dual parallel fibers. Adv Mater 2020;32(45):e2003453.

    Article  Google Scholar 

  35. Liu W, Zhao L, Wang C, Zhou J. Conductive nanomaterials for cardiac tissues engineering. Eng Regen 2020;1:88–94.

    Google Scholar 

  36. Kim YI, Kim MW, An S, Yarin AL, Yoon SS. Reusable filters augmented with heating microfibers for antibacterial and antiviral sterilization. ACS Appl Mater Interfaces 2021;13(1):857–67.

    Article  CAS  Google Scholar 

  37. Tao W, Kong N, Ji X, Zhang Y, Sharma A, Ouyang J, Qi B, Wang J, Xie N, Kang C, Zhang H, Farokhzad OC, Kim JS. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev 2019;48(11):2891–912.

    Article  CAS  Google Scholar 

  38. Sun L, Fan L, Bian F, Chen G, Wang Y, Zhao Y. MXene-Integrated microneedle patches with innate molecule encapsulation for wound healing. Research 2021;2021:9838490.

    Article  CAS  Google Scholar 

  39. Romo-Uribe A, Albanil L. POSS-Induced dynamic cross-links produced self-healing and shape memory physical hydrogels when copolymerized with N-Isopropyl acrylamide. ACS Appl Mater Interfaces 2019;11(27):24447–58.

    Article  CAS  Google Scholar 

  40. Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO, Fisher JP, Nguyen TD, Gracias DH. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces 2015;7(5):3398–405.

    Article  CAS  Google Scholar 

  41. Wang FW, Hsu CW, Hsieh CC. Numerical design and experimental realization of a PNIPAM-based micro thermosensor. ACS Appl Mater Interfaces 2019;11(8):8591–600.

    Article  CAS  Google Scholar 

  42. Yang Y, Zhang Q, Xu T, Zhang H, Zhang M, Lu L, Hao Y, Fuh JH, Zhao X. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials 2020;263:120378.

    Article  CAS  Google Scholar 

  43. Zhang H, Chen G, Yu Y, Guo J, Tan Q, Zhao Y. Microfluidic printing of slippery textiles for medical drainage around wounds. Adv Sci 2020;7(16):2000789.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFA0908200), the National Science Foundation of China (52073060 and 61927805), National Major New Drug Innovation Science and Technology Major Project (2019ZX09301132), Guangdong Basic and Applied Basic Research Foundation (2021B1515120054, 2019A1515110925), and the Shenzhen Fundamental Research Program (JCYJ20190813152616459 and JCYJ20210324133214038). 

Author information

Authors and Affiliations

Authors

Contributions

YJZ conceived the study and participated in its design. CZ conducted the experiments, wrote this manuscript and finished all figures in this article. JHG, HZ, YJZ, CHY and LPZ contributed to scientific discussion of the article. YJZ and LPZ helped finish the animal experiments. MN completed the cell experiment in this research.

Corresponding authors

Correspondence to Yujuan Zhu, Yuanjin Zhao or Liping Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 79 KB)

Supplementary file2 (PDF 1026 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Guo, J., Zhang, H. et al. Bamboo-Inspired Gasotransmitter Microfibres for Wound Healing. Adv. Fiber Mater. 5, 388–399 (2023). https://doi.org/10.1007/s42765-022-00235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00235-7

Keywords

Navigation