Skip to main content

Advertisement

Log in

Okra-Like Multichannel TiO@NC Fibers Membrane with Spatial and Chemical Restriction on Shuttle-Effect for Lithium–Sulfur Batteries

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

It is especially important to coordinately design the structure and composition of the host in lithium–sulfur batteries (LSBs) for improving its physicochemical adsorption and conversion of lithium polysulfide, which can alleviate the harmful shuttle effect. Herein, a self-supporting multichannel nitrogen-doped carbon fibers membrane embedded with TiO nanoparticles (TiO@NC) was constructed as the electrode for LSBs. The inner channels and the embedded TiO nanoparticles offer spatial confinement and chemical binding for polysulfides, respectively. Moreover, the TiO nanoparticles have abundant oxygen vacancies that promote the conversion of polysulfides. In addition, the nitrogen-doped carbon skeleton can not only serve as highly conductive transportation paths for electrons, but also integrate with the inner channels to sustain the morphology and bear volume expansion during cycling processes. Therefore, the fabricated self-supporting quadruple-channel TiO@NC ultrathin fibers electrode exhibits a high initial specific capacity of 1342.8 mAh g−1 at 0.5 C and high-rate capability of 505.8 mAh g−1 at 4.0 C. In addition, it maintains 696.0 mAh g−1 over 500 cycles with only 0.059% capacity decay per cycle at the high current density of 2.0 C. The multichannel configuration combined with TiO nanoparticles provides a synergetic design strategy for fabricating high-performance electrodes in LSBs.

Graphical abstract

The okra-like multichannel TiO@NC membrane has a multiscale synergistic effect on polysulfides to restrict the shuttle effect in lithium–sulfur batteries. In macroscopic, the self-supporting fibers membrane offers a stable conductive network. In microscopic, the multiple channels provide long-range spatial confinement for polysulfides and alleviate volume expansion. In nanoscopic, TiO nanoparticles have chemical binding effect on polysulfides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mat 2009;22:587.

    Article  Google Scholar 

  2. Gao S, Wang N, Li S, Li D, Cui Z, Yue G, Liu J, Zhao X, Jiang L, Zhao Y. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed 2020;59:2465.

    Article  CAS  Google Scholar 

  3. Ma L, Hou B, Shang N, Zhang S, Wang C, Zong L, Song J, Wang J, Zhao X. The precise synthesis of twin-born Fe3O4/FeS/carbon nanosheets for high-rate lithium-ion batteries. Mat Chem Front 2021;5:4579.

    Article  CAS  Google Scholar 

  4. Liu Y, Yan Y, Li K, Yu Y, Wang Q, Liu M. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures. Chem Commun 2019;55:1084.

    Article  CAS  Google Scholar 

  5. Zhao S, Kang Y, Liu M, Wen B, Fang Q, Tang Y, He S, Ma X, Liu M, Yan Y. Modulating the electronic structure of nanomaterials to enhance polysulfides confinement for advanced lithium–sulfur batteries. J Mater Chem A 2021;9:18927.

    Article  CAS  Google Scholar 

  6. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 2009;8:500.

    Article  CAS  Google Scholar 

  7. Shi F, Chen C, Xu Z-L. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Adv Fiber Mater 2021;3:275.

    Article  CAS  Google Scholar 

  8. Hualin Y, Yanguang L. Towards practical lean-electrolyte Li-S batteries: highly solvating electrolytes or sparingly solvating electrolytes? Nano Res Energy 2022;1:e9120012.

    Article  Google Scholar 

  9. Li Q, Song Y, Xu R, Zhang L, Gao J, Xia Z, Tian Z, Wei N, Rummeli MH, Zou X, Sun J, Liu Z. Biotemplating growth of Nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 2018;12:10240.

    Article  CAS  Google Scholar 

  10. Wang W, Zhao Y, Zhang Y, Wang J, Cui G, Li M, Bakenov Z, Wang X. Defect-rich multishelled Fe-doped Co3O4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. ACS Appl Mater Interfaces 2020;12:12763.

    Article  CAS  Google Scholar 

  11. Fu A, Wang C, Pei F, Cui J, Fang X, Zheng N. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019;15:1804786.

    Article  Google Scholar 

  12. Wang RR, Chen ZL, Sun YQ, Chang C, Ding CF, Wu RB. Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries. Chem Eng J 2020;399:125686.

    Article  CAS  Google Scholar 

  13. Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh ZW, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu DS, Zhang Q, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci 2017;114:840.

    Article  CAS  Google Scholar 

  14. Wang Y, Zhang R, Pang Y-C, Chen X, Lang J, Xu J, Xiao C, Li H, Xi K, Ding S. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019;16:228.

    Article  Google Scholar 

  15. Zhong Y, Chao DL, Deng SJ, Zhan JY, Fang RY, Xia Y, Wang YD, Wang XL, Xia XH, Tu JP. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv Funct Mater 2018;28:1706391.

    Article  Google Scholar 

  16. Xiao QHQ, Yang JL, Wang XD, Deng YR, Han P, Yuan N, Zhang L, Feng M, Wang CA, Liu RP. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: progress and perspective. Carbon Energy 2021;3:271.

    Article  CAS  Google Scholar 

  17. Li K, Ni X, Wu Q, Yuan C, Li C, Li D, Chen H, Lv Y, Ju A. Carbon-based fibers: fabrication, characterization and application. Adv Fiber Mater 2022;4:631.

    Article  CAS  Google Scholar 

  18. Liu M, Zhang P, Qu Z, Yan Y, Lai C, Liu T, Zhang S. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat Commun 2019;10:3917.

    Article  Google Scholar 

  19. Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater 2021;33:2101262.

    Article  CAS  Google Scholar 

  20. Liu B, Libanori A, Zhou Y, Xiao X, Xie G, Zhao X, Su Y, Wang S, Yuan Z, Duan Z, Liang J, Jiang Y, Tai H, Chen J. Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis. ACS Appl Mater Interfaces 2022;14:7301.

    Article  CAS  Google Scholar 

  21. Li W, Yang T, Liu C, Huang Y, Chen C, Pan H, Xie G, Tai H, Jiang Y, Wu Y, Kang Z, Chen LQ, Su Y, Hong Z. Optimizing piezoelectric nanocomposites by high-throughput phase-field simulation and machine learning. Adv Sci 2022;9:2105550.

    Article  CAS  Google Scholar 

  22. Tang YQ, Huang Y, Luo L, Fan DL, Lu YC, Manthiram A. Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium-sulfur batteries. Electrochim Acta 2021;367:137482.

    Article  CAS  Google Scholar 

  23. Sun Z, Zhang J, Yin L, Hu G, Fang R, Cheng HM, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun 2017;8:14627.

    Article  Google Scholar 

  24. Yan Y, Zhang P, Qu Z, Tong M, Zhao S, Li Z, Liu M, Lin Z. Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery. Nano Lett 2020;20:7662.

    Article  CAS  Google Scholar 

  25. Tan J, Li D, Liu Y, Zhang P, Qu Z, Yan Y, Hu H, Cheng H, Zhang J, Dong M, Wang C, Fan J, Li Z, Guo Z, Liu M. A self-supported 3D aerogel network lithium-sulfur battery cathode: sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. J Mater Chem A 2020;8:7980.

    Article  CAS  Google Scholar 

  26. Xue P, Zhu KP, Gong WB, Pu J, Li XY, Guo C, Wu LY, Wang R, Li HP, Sun JY, Hong G, Zhang Q, Yao YG. “One stone two birds” design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium-sulfur batteries. Adv Energy Mater 2022;12:2200308.

    Article  CAS  Google Scholar 

  27. Su Y, Chen C, Pan H, Yang Y, Chen G, Zhao X, Li W, Gong Q, Xie G, Zhou Y, Zhang S, Tai H, Jiang Y, Chen J. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater 2021;31:2010962.

    Article  CAS  Google Scholar 

  28. Su Y, Li W, Yuan L, Chen C, Pan H, Xie G, Conta G, Ferrier S, Zhao X, Chen G, Tai H, Jiang Y, Chen J. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021;89:106321.

    Article  CAS  Google Scholar 

  29. Li C, Qiu M, Li R, Li X, Wang M, He J, Lin G, Xiao L, Qian Q, Chen Q, Wu J, Li X, Mai Y-W, Chen Y. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater 2021;4:43.

    Article  Google Scholar 

  30. Liu R, Hou L, Yue G, Li H, Zhang J, Liu J, Miao B, Wang N, Bai J, Cui Z, Liu T, Zhao Y. Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv Fiber Mater 2022;4:604.

    Article  CAS  Google Scholar 

  31. Yao Y, Wang H, Yang H, Zeng S, Xu R, Liu F, Shi P, Feng Y, Wang K, Yang W, Wu X, Luo W, Yu Y. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv Mater 2020;32:1905658.

    Article  CAS  Google Scholar 

  32. Zhao Y, Cao X, Jiang L. Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 2007;129:764.

    Article  CAS  Google Scholar 

  33. Wang N, Chen H, Lin L, Zhao Y, Cao X, Song Y, Jiang L. Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning. Macromol Rapid Commun 2010;31:1622.

    Article  CAS  Google Scholar 

  34. Zhao TY, Liu ZY, Nakata K, Nishimoto S, Murakami T, Zhao Y, Jiang L, Fujishima A. Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. J Mater Chem 2010;20:5095.

    Article  CAS  Google Scholar 

  35. Yang HS, Lee BS, You BC, Sohn HJ, Yu WR. Fabrication of carbon nanofibers with Si nanoparticle-stuffed cylindrical multi-channels via coaxial electrospinning and their anodic performance. RSC Adv 2014;4:47389.

    Article  CAS  Google Scholar 

  36. Li Z, Guan BY, Zhang J, Lou XW. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 2017;1:576.

    Article  CAS  Google Scholar 

  37. Deng D-R, An T-H, Li Y-J, Wu Q-H, Zheng M-S, Dong Q-F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li-S batteries. J Mater Chem A 2016;4:16184.

    Article  CAS  Google Scholar 

  38. Li Z, Zhang J, Guan B, Wang D, Liu L-M, Lou XW. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat Commun 2016;7:13065.

    Article  CAS  Google Scholar 

  39. Singh A, Kalra V. TiO phase stabilized into freestanding nanofibers as strong polysulfide immobilizer in Li-S batteries: evidence for lewis acid-base interactions. ACS Appl Mater Interfaces 2018;10:37937.

    Article  CAS  Google Scholar 

  40. Lai LF, Potts JR, Zhan D, Wang L, Poh CK, Tang CH, Gong H, Shen ZX, Jianyi LY, Ruoff RS. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 2012;5:7936.

    Article  CAS  Google Scholar 

  41. Ismagilov ZR, Shalagina AE, Podyacheva OY, Ischenko AV, Kibis LS, Boronin AI, Chesalov YA, Kochubey DI, Romanenko AI, Anikeeva OB, Buryakov TI, Tkachev EN. Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 1922;2009:47.

    Google Scholar 

  42. Chen L, Liu YZ, Ashuri M, Liu CH, Shaw LL. Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries. J Mater Chem A 2014;2:18026.

    Article  CAS  Google Scholar 

  43. Song JX, Xu T, Gordin ML, Zhu PY, Lv DP, Jiang YB, Chen YS, Duan YH, Wang DH. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 2014;24:1243.

    Article  CAS  Google Scholar 

  44. Kim BG, Jo C, Shin J, Mun Y, Lee J, Choi JW. Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic lithium-oxygen batteries. ACS Nano 2017;11:1736.

    Article  CAS  Google Scholar 

  45. Li MR, Zhu Y, Wu XD, Lei YM, He XX, Li Q, Jiang RB, Lei ZB, Liu ZH, Sun J. Formation mechanism of nitrogen-doped titanium monoxide nanospheres and their application as sulfur hosts in lithium sulfur batteries. ACS Appl Energ Mater 2021;4:5713.

    Article  CAS  Google Scholar 

  46. Lee CL, Kim C, Kim ID. Ultrasmall titanium oxide/titanium oxynitride composite nanoparticle-embedded carbon nanofiber mats as high-capacity and free-standing electrodes for lithium sulfur batteries. RSC Adv 2017;7:44804.

    Article  CAS  Google Scholar 

  47. Ma L, Yu L-J, Liu J, Su Y-Q, Li S, Zang X, Meng T, Zhang S, Song J, Wang J, Zhao X, Cui Z, Wang N, Zhao Y. Construction of Ti4O7/TiN/carbon microdisk sulfur host with strong polar N-Ti-o bond for ultralong life lithium-sulfur battery. Energy Storage Mater 2022;44:180.

    Article  Google Scholar 

  48. Ji L, Wang X, Jia YF, Hu QL, Duan LM, Geng ZB, Niu ZQ, Li WS, Liu JH, Zhang YG, Feng SH. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry. Adv Funct Mater 2020;30:1910533.

    Article  CAS  Google Scholar 

  49. Shang C, Li G, Wei B, Wang J, Gao R, Tian Y, Chen Q, Zhang Y, Shui L, Zhou G, Hu Y, Chen Z, Wang X. Dissolving vanadium into titanium nitride lattice framework for rational polysulfide regulation in Li–S batteries. Adv Energy Mater 2020;11:2003020.

    Article  Google Scholar 

  50. Bolis V, Bordiga S, Lamberti C, Zecchina A, Carati A, Rivetti F, Spano G, Petrini G. A calorimetric, IR, XANES and EXAFS study of the adsorption of NH3 on Ti-silicalite as a function of the sample pre-treatment. Microporous Mesoporous Mat 1999;30:67.

    Article  CAS  Google Scholar 

  51. Palenik GJ. Bond valence sums in coordination chemistry using oxidation state independent R0 values. A simple calculation of the oxidation state of titanium in complexes containing Ti–N, Ti–O, and Ti–Cl bonds. Inorg Chem. 1997;36:3394.

    Article  CAS  Google Scholar 

  52. Sahoo M, Yadav AK, Jha SN, Bhattacharyya D, Mathews T, Sahoo NK, Dash S, Tyagi AK. Nitrogen location and Ti-o bond distances in pristine and N-doped TiO2 anatase thin films by x-ray absorption studies. J Phys Chem C 2015;119:17640.

    Article  CAS  Google Scholar 

  53. Krivtsov I, Ilkaeva M, Salas-Colera E, Anighouz Z, Garcia JR, Diaz E, Ordonez S, Villar-Rodil S. Consequences of nitrogen doping and oxygen enrichment on titanium local order and photocatalytic performance of TiO2 anatase. J Phys Chem C 2017;121:6770.

    Article  CAS  Google Scholar 

  54. Li Z, He Q, Xu X, Zhao Y, Liu X, Zhou C, Ai D, Xia L, Mai L. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv Mater 2018;30:1804089.

    Article  Google Scholar 

  55. Lim WG, Kim S, Jo C, Lee J. A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew Chem Int Ed 2019;58:18746.

    Article  CAS  Google Scholar 

  56. Liu D, Zhang C, Zhou G, Lv W, Ling G, Zhi L, Yang QH. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv Sci 2018;5:1700270.

    Article  Google Scholar 

  57. Song J, Gordin ML, Xu T, Chen S, Yu Z, Sohn H, Lu J, Ren Y, Duan Y, Wang D. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew Chem Int Ed 2015;54:4325.

    Article  CAS  Google Scholar 

  58. Yuan H, Zhang W, Wang J-G, Zhou G, Zhuang Z, Luo J, Huang H, Gan Y, Liang C, Xia Y, Zhang J, Tao X. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Mater. 2018;10:1.

    Article  Google Scholar 

  59. Hu J, Wang Q, Fu L, Rajagopalan R, Cui Y, Chen H, Yuan H, Tang Y, Wang H. Titanium monoxide-stabilized silicon nanoparticles with a Litchi-like structure as an advanced anode for Li–ion batteries. ACS Appl Mater Interfaces 2020;12:48467.

    Article  CAS  Google Scholar 

  60. Liu M, Deng NP, Ju JG, Fan LL, Wang LY, Li ZJ, Zhao HJ, Yang G, Kang WM, Yan J, Cheng BW. A review: electrospun nanofiber materials for lithium-sulfur batteries. Adv Funct Mater 2019;29:1905467.

    Article  CAS  Google Scholar 

  61. Li D, Li H, Zheng S, Gao N, Li S, Liu J, Hou L, Liu J, Miao B, Bai J, Cui Z, Wang N, Wang B, Zhao Y. CoS2-TiO2@C core-shell fibers as cathode host material for high-performance lithium-sulfur batteries. J Colloid Interface Sci 2022;607:655.

    Article  CAS  Google Scholar 

  62. Yang D, Liang Z, Zhang C, Biendicho JJ, Botifoll M, Spadaro MC, Chen Q, Li M, Ramon A, Moghaddam AO, Llorca J, Wang J, Morante JR, Arbiol J, Chou SL, Cabot A. NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium-sulfur batteries. Adv Energy Mater 2021;11:2101250.

    Article  CAS  Google Scholar 

  63. Wang Y, Zhang R, Chen J, Wu H, Lu S, Wang K, Li H, Harris CJ, Xi K, Kumar RV, Ding S. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv Energy Mater 2019;9:1900953.

    Article  Google Scholar 

  64. Bartkowski S, Neumann M, Kurmaev EZ, Fedorenko VV, Shamin SN, Cherkashenko VM, Nemnonov SN, Winiarski A, Rubie DC. Electronic structure of titanium monoxide. Phys Rev B 1997;56:10656.

    Article  CAS  Google Scholar 

  65. Salhabi EHM, Zhao J, Wang J, Yang M, Wang B, Wang D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew Chem Int Ed 2019;58:9078.

    Article  CAS  Google Scholar 

  66. Wang J, Wan J, Wang D. Hollow multishelled structures for promising applications: understanding the structure-performance correlation. Acc Chem Res 2019;52:2169.

    Article  CAS  Google Scholar 

  67. Chen G, Zhong W, Li Y, Deng Q, Ou X, Pan Q, Wang X, Xiong X, Yang C, Liu M. Rational design of TiO-TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces 2019;11:5055.

    Article  CAS  Google Scholar 

  68. Xu J, Zhang WX, Fan HB, Cheng FL, Su DW, Wang GX. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018;51:73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 22175007, 21975007, 52172080, 22105012, 22005012, 22105059), the National Natural Science Foundation for Outstanding Youth Foundation, the Fundamental Research Funds for the Central Universities (YWF-22-K-101), the National Program for Support of Top-notch Young Professionals, the 111 project (Grant No. B14009), the Youth Top-notch Talent Foundation of Hebei Provincial Universities (BJK2022023), and the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities) (FRF-IDRY-21-015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nü Wang, Xiaoxian Zhao or Yong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2267 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, J., Ma, L. et al. Okra-Like Multichannel TiO@NC Fibers Membrane with Spatial and Chemical Restriction on Shuttle-Effect for Lithium–Sulfur Batteries. Adv. Fiber Mater. 5, 252–265 (2023). https://doi.org/10.1007/s42765-022-00217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00217-9

Keywords

Navigation