Skip to main content

Advertisement

Log in

Silicon Supplement Improves Growth and Yield Under Salt Stress by Modulating Ionic Homeostasis and Some Physiological Indices in Hordeum vulgare L

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The application of silicon through external means has been proved to accelerate stress tolerance in different plant species. In this regard, we conducted an experiment to evaluate the role of silicon applied through rooting media on growth and yield of barley (Hordeum vulgare L.) under salinity stress. Silicon (200 ppm) was applied through rooting media to barley (Hordeum vulgare L.) genotypes [salt tolerant-B10008 and salt sensitive-B14011] subjected to 200 mM NaCl stress. A remarkable decline in growth (shoot and root lengths and biomass accumulation), leaf relative water contents (LRWC), chlorophyll constituents, and ionic concentrations (K+, Ca2+, P, and Si), with a substantial increase in total soluble proteins (TSP) and concentrations of Na+ and Cl, was observed under salt stressed compared to control plants. Salinity stress lowered the efficiency of Photosystem II (PSII) by hindering absorption/transport of electrons through thylakoid membranes; decrease in size of reaction centers (Fv/Fo) and delayed electron transport from PSII to ETC (Fm/FO) further confirmed by the appearance of K- and L-bands. Alternatively, the fertigation of silicon (Si) through rooting media significantly (P < 0.001) enhanced the uptake of essential nutrients i.e., Ca2+, P, K+, and Si, while lowered the uptake and/or accumulation of Na+ and Cl concentration in salt-stressed barley plants. Similarly, the PSII efficiency was enhanced by maintaining photosynthetic apparatus intact under salt-stressed plants. The yield response was also lowered in salt-stressed barley plants, whereas Si application improved yield-related attributes (grains weight, number of tillers, and number of grains). Salinity (200 mM NaCl) stress reduced growth (26–58%) and biomass accumulation (25–34%) while application of silicon through rooting media enhanced growth (29–36%) and biomass (16–19%) in barley (B-10008, B-14011) genotypes as compared to salt-stressed plants. This boost in growth after silicon supplement showed improved chlorophyll contents, photosynthetic efficiency, ionic balance, and ultimately better yield (26–55%). Although the tolerant genotype (B-10008) showed better salt tolerance, still the response of sensitive genotype (B-14011) was outstanding after silicon application in saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available on demand.

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Phy Plant 37:6

    Google Scholar 

  • Abbasi GH, Hussain A, Ali M, Jami M, Anwar-ul-Haq M, Malik Z, Ali S, Javaid B (2020) Role of silicon in morpho-physiological, ionic and biochemical acclimati on of mungbean challenged withsalt stress. Pak J Agri Sci 57:457–464

    Google Scholar 

  • Abdelaal KA, Mazrou YS, Hafez YM (2020) Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants 9:733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Google Scholar 

  • Ahanger MA, Agarwal R (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    CAS  PubMed  Google Scholar 

  • Akhter MS, Noreen S, Saleem N, Saeed M, Ahmad S, Khan TM, Saeed M, Mahmood S (2021a) Silicon can alleviate toxic effect of nacl stress by improving K+ and si uptake, photosynthetic efficiency with reduced Na+ toxicity in barley (Hordeum vulgare L.). SILICON 14:4991–5000

    Google Scholar 

  • Akhter MS, Noreen S, Mahmood S, Athar HUR, Ashraf M, Alsahli AA, Ahmad P (2021) Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. J King Saud Uni Sci 33:101239

    Google Scholar 

  • Akhter MS, Noreen S, Ummara U, Aqeel M, Saleem N, Ahmed MM, Mahmood S, Athar HUR, Alyemeni MN, Kaushik P (2022) Silicon-induced mitigation of NaCl stress in barley (Hordeum vulgare L.), associated with enhanced enzymatic and non-enzymatic antioxidant activities. Plants 11:2379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen SK, Dobrenz AK, Schonhorst MH, Stoner JE (1985) Heritability of NaCl tolerance in germinating alfalfa seeds. Agron J 77:90–96

    Google Scholar 

  • Aqeel M, Khalid N, Tufail A, Ahmad RZ, Akhter MS, Luqman M, Javed MT, Irshad MK, Alamri S, Hashem M (2021) Elucidating the distinct interactive impact of cadmium and nickel on growth, photosynthesis, metal-homeostasis, and yield responses of mung bean (Vigna radiata L.) varieties. Environ Sci Pollut Res 28:27376–27390

    CAS  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    PubMed  PubMed Central  Google Scholar 

  • Betzen BM, Smart CM, Maricle KL, MariCle BR (2019) Effects of increasing salinity on photosynthesis and plant water potential in kansas salt marsh species. Transact Kansas Acad Sci 122:49–58

    Google Scholar 

  • Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD (2017) Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J Exp Bot 68:3129–3143

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analy Biochem 72:248–254

    CAS  Google Scholar 

  • Bybordi A (2015) Influence of exogenous application of silicon and potassium on physiological responses, yield, and yield components of salt-stressed wheat. Comm Soil Sci Plant Anal 46:109–122

    CAS  Google Scholar 

  • Chaiwong N, Prom-u-thai C (2022) Significant roles of silicon for improving crop productivity and factors affecting silicon uptake and accumulation in rice: a Review. J Soil Sci Plant Nutr 22:1970–1982

    CAS  Google Scholar 

  • Chen D, Yin L, Deng X, Wang S (2014) Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Phy Plan 36:2531–2535

    CAS  Google Scholar 

  • Chen D, Cao B, Wang S, Liu P, Deng X, Yin L, Zhang S (2016) Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci Rep 6:22882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Çiçek N, Kalaji H, Ekmekçi Y (2020) Probing the photosynthetic efficiency of some European and Anatolian Scots pine populations under UV-B radiation using polyphasic chlorophyll a fluorescence transient. Photosynthetica 58:468–478

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    PubMed  PubMed Central  Google Scholar 

  • Exley C, Guerriero G, Lopez X (2020) How is silicic acid transported in plants? SILICON 12:2641–2645

    CAS  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978

    PubMed  PubMed Central  Google Scholar 

  • Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol 129:374–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems FEBS Letters 555:40–44

  • Gong H, Randall D, Flowers T (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    CAS  PubMed  Google Scholar 

  • Guerriero G, Hausman J-F, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    PubMed  PubMed Central  Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    CAS  Google Scholar 

  • Hniličková H, Hnilička F, Orsák M, Hejnák V (2019) Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ 65:90–96

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular California Agri Exp Station 347:32

    Google Scholar 

  • Hoffmann J, Berni R, Hausman J-F, Guerriero G (2020) A review on the beneficial role of silicon against salinity in non-accumulator crops: Tomato as a model. Biomolecules 10:1284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huihui Z, Xin L, Yan-hui C, Yue W, Ma-bo L, Rong-yi Y, Nan X, Guang-yu S (2020a) A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline–alkali mixed stress. Trees:1–14

  • Huihui Z, Yue W, Xin L, Guoqiang H, Yanhui C, Zhiyuan T, Jieyu S, Nan X, Guangyu S (2020b) Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotox Environ Safety 190:110164

  • Hurtado AC, Chiconato DA, de Mello PR, Junior GdSS, Felisberto G (2019) Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiol Biochem 142:224–233

    Google Scholar 

  • Ibrahim M, Merwad A, Elnaka E, Burras C, Follett L (2016) Application of silicon ameliorated salinity stress and improved wheat yield. J Soil Sci Environ Manag 7:81–91

    CAS  Google Scholar 

  • Iqbal M, Athar HUR, Ibrahim M, Javed M, Zafar ZU, Ashraf M (2019) Leaf proteome analysis signified that photosynthesis and antioxidants are key indicators of salinity tolerance in canola (Brassica napus L.). Pak J Bot 51:1955–1968

    CAS  Google Scholar 

  • Jackson M (1973) Soil chemical analysis Prentice Hall of India Ltd. New Delhi 498

  • Kalaji HM, Govindjee BK, Kościelniak J, Żuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two syrian barley landraces. Environ Exp Bot 73:64–72

    CAS  Google Scholar 

  • Kalaji HM, Rastogi A, Živčák M, Brestic M, Daszkowska-Golec A, Sitko K, Alsharafa K, Lotfi R, Stypiński P, Samborska I (2018) Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56:953–961

    CAS  Google Scholar 

  • Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    CAS  Google Scholar 

  • Keisham M, Mukherjee S, Bhatla SC (2018) Mechanisms of sodium transport in plants-progresses and challenges. I J Mol Sci 19:647

    Google Scholar 

  • Khan A, Khan AL, Muneer S, Kim Y-H, Al-Rawahi A, Al-Harrasi A (2019a) Silicon and salinity: cross-talk in crop mediated stress tolerance mechanisms. Front Plant Sci 10:1429

    PubMed  PubMed Central  Google Scholar 

  • Khan TA, Yusuf M, Ahmad A, Bashir Z, Saeed T, Fariduddin Q, Hayat S, Mock H-P, Wu T (2019b) Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chem 289:500–511

    CAS  PubMed  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M (2020a) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232

    CAS  PubMed  Google Scholar 

  • Khan ZS, Rizwan M, Hafeez M, Ali S, Adrees M, Qayyum MF, Khalid S, Ur Rehman MZ, Sarwar MA (2020b) Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environ Sci Poll Res 27:4958–4968

    CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Khodarahmi S, Haghighi M (2014) Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Archiv Agron Soil Sci 60:639–653

    CAS  Google Scholar 

  • Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419:447–455

    CAS  Google Scholar 

  • Kramer I, Mau Y (2020) Soil degradation risks assessed by the SOTE model for salinity and sodicity. Water Resour Res. https://doi.org/10.1029/2020WR027456

    Article  Google Scholar 

  • Krishnasamy K, Bell R, Ma Q (2014) Wheat responses to sodium vary with potassium use effeciency of cultivars. Front Plant Sci 5:631

    PubMed  PubMed Central  Google Scholar 

  • Kumar V, Kumar P, Khan A (2020) Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal Agric Biotech 23:101463

    Google Scholar 

  • Laifa I, Hajji M, Farhat N, Elkhouni A, Smaoui A, M’nif A, Hamzaoui AH, Savouré A, Abdelly C, Zorrig W (2020) Beneficial effects of silicon (Si) on sea barley (Hordeum marinum Huds.) under salt stress. Silicon 13:4501–4517

    Google Scholar 

  • Li H, Zhu Y, Hu Y, Han W, Gong H (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37:71

    Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Lima CS, Ferreira-Silva SL, Carvalho FEL, Neto MCL, Aragão RM, Silva EN, Sousa RMJ, Silveira JAG (2018) Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environ Exp Bot 149:59–69

    CAS  Google Scholar 

  • Liu Z, Zhu J, Yang X, Wu H, Wei Q, Wei H, Zhang H (2018) Growth performance, organ-level ionic relations and organic osmoregulation of Elaeagnus angustifolia in response to salt stress. PLoS ONE. https://doi.org/10.1371/journal.pone.0191552

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahdieh M, Habibollahi N, Amirjani M, Abnosi M, Ghorbanpour M (2015) Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. J Soil Sci Plant Nutr 15:1050–1060

    CAS  Google Scholar 

  • Mahmood K (2011) Salinity tolerance in barley (Hordeum vulgare L.): effects of varying NaCl, K+/Na+ and NaHCO3 levels on cultivars differing in tolerance. Pak J Bot 43:1651–1654

    CAS  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    PubMed  PubMed Central  Google Scholar 

  • Mahmoud AWM, Abdeldaym EA, Abdelaziz SM, El-Sawy MB, Mottaleb SA (2020) Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy 10:19

    Google Scholar 

  • Majeed A, Muhammad Z (2019) Salinity: a major agricultural problem-causes, impacts on crop productivity and management strategies. In: Hasanuzzaman M, Hakim KR, Nahar K and Alharby HF (eds) Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches. springer nature, Switzerland, pp 83–99

  • Malhotra H, Sharma S, Pandey R (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 171–190

    Google Scholar 

  • Mandlik R, Thakral V, Raturi G, Shinde S, Nikolic M, Tripathi DK, Sonah H, Deshmukh R (2020) Significance of silicon uptake, transport, and deposition in plants. J Exp Bot 71:6703–6718

    CAS  PubMed  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants (3rd edn); Academic Press ISBN: 9780123849069

  • Martin TN, Nunes UR, Stecca JDL, Pahins DB (2017) Foliar application of silicon on yield components of wheat crop. Revista Caatinga 30:578–585

    Google Scholar 

  • McDonald GK, Tavakkoli E, Rengasamy P (2020) Commentary: Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 11:1194

    PubMed  PubMed Central  Google Scholar 

  • Messedi D, Farhani F, Hamed K, Trabelsi N, Ksouri R, Athar H, Abdelly C (2016) Highlighting the mechanisms by which proline can confer tolerance to salt stress in Cakile maritima. Pak J Bot 48:417–427

  • Meng Y, Yin Q, Yan Z, Wang Y, Niu J, Zhang J, Fan K (2020) Exogenous silicon enhanced salt resistance by maintaining K+/Na+ homeostasis and antioxidant performance in alfalfa leaves. Front Plant Sci 11:1183

    PubMed  PubMed Central  Google Scholar 

  • Mihailovic N, Lazarevic M, Dzeletovic Z, Vuckovic M, Durdevic M (1997) Chlorophyllase activity in wheat, Triticum aestivum L. leaves during drought and its dependence on the nitrogen ion form applied. Plant Sci 129:141–146

    CAS  Google Scholar 

  • Muller J (1991) Determining leaf surface area by means of linear measurements in wheat and triticale (Brief report). Archiv Fuchtungsforsch 21:121–123

    CAS  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops-what is the cost? New Phytol 208:668–673

    CAS  PubMed  Google Scholar 

  • Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225:1091–1096

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Munns R, Wallace PA, Teakle NL, Colmer TD (2010) Measuring soluble ion concentrations (Na+, K+, Cl) in salt-treated plants. In: Sunkar R (ed) Plant stress tolerance, methods and protocols. Humana Totowa, New Jersey, pp 371–382

    Google Scholar 

  • Naheed R, Aslam H, Kanwal H, Farhat F, Gamar MIA, Al-Mushhin AA, Jabborova D, Ansari MJ, Shaheen S, Aqeel M (2021) Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance Saudi. J Biol Sci 28:5469–5479

    CAS  Google Scholar 

  • Naheed R, Zahid M, Aqeel M, Maqsood MF, Kanwal H, Khalid N, Hashem M, Alamri S, Noman A (2022) Mediation of growth and metabolism of Pisum sativum in salt stress potentially be credited to thiamine. J Soil Sci Plant Nutr 1–14

  • Najar R, Aydi S, Sassi-Aydi S, Zarai A, Abdelly C (2019) Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosyst I J Dealing Asp Plant Biol 153:88–97

    Google Scholar 

  • Neto HdSL, de Almeida GM, Mesquita RO, Freitas WES, de Oliveira AB, da Silva DN, Gomes-Filho E (2020) Silicon supplementation induces physiological and biochemical changes that assist lettuce salinity tolerance. SILICON 13:4075–4089

    Google Scholar 

  • Pardo JM, Quintero FJ (2002) Plants and sodium ions: keeping company with the enemy. Genome Biol. https://doi.org/10.1186/gb-2002-3-6-reviews1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Parveen N, Ashraf M (2010) Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pak J Bot 42:1675–1684

    CAS  Google Scholar 

  • Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M (2021) Interactions of silicon with essential and beneficial elements in plants. Front Plant Sci 12:1224

    Google Scholar 

  • Pereira WE, de Siqueira DL, Martínez CA, Puiatti M (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J Plant Physiol 157:513–520

    CAS  Google Scholar 

  • Phogat V, Mallants D, Cox J, Šimůnek J, Oliver D, Awad J (2020) Management of soil salinity associated with irrigation of protected crops. Agri Water Manag 227:105845

    Google Scholar 

  • Prodjinoto H, Irakoze W, Gandonou C, Lutts S (2021) Inhibitors of Na/H antiporter and cation-chloride-cotransporters have contrasting effects on two cultivars of Oryza glaberrima Steud. differing in salinity resistance. J Soil Sci Plant Nutr 21:3247–3253

    CAS  Google Scholar 

  • Qados AMA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. J Exp Agri I:509–524

    Google Scholar 

  • Rastogi A, Kovar M, He X, Zivcak M, Kataria S, Kalaji H, Skalicky M, Ibrahimova U, Hussain S, Mbarki S (2020) JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica 58:518–528

    CAS  Google Scholar 

  • Raza MM, Ullah S, Tariq A, Abbas T, Yousaf MM, Altay V, Ozturk M (2019) Alleviation of salinity stress in maize using silicon nutrition. Notulae Bot Horti Agro Cluj-Napoca 47:1340–1347

    CAS  Google Scholar 

  • Rehman U, Atique QR, Rehman A, Wasaya A, Farooq O, Sarwar N, Iqbal MM, Ahmad S (2020) Silicon coating on maize seed mitigates saline stress in Yermosols of southern punjab. SILICON 13:4293–4303

    Google Scholar 

  • Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan MU, Sarwar MI (2019) A review: impact of salinity on plant growth. Natu Sci 17:34–40

    Google Scholar 

  • Saleh J, Najafi N, Oustan S (2017) Effects of silicon application on wheat growth and some physiological characteristics under different levels and sources of salinity. Comm Soil Sci Plant Anal 48:1114–1122

    CAS  Google Scholar 

  • Sarker U, Oba S (2020) The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci 11:559876

    PubMed  PubMed Central  Google Scholar 

  • Schrenk W, Lentz CF, Glendening B (1951) Determination of calcium using the flame photometer as an excitation source for the spectrograph. Transaction Kansas Acad Sci (1903-) 54:420–425

    CAS  Google Scholar 

  • Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT, Velarde-Buendia A, Massart A, Hill CB, Roessner U (2016) Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol 172:2445–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170:847–853

    CAS  PubMed  Google Scholar 

  • Sirisuntornlak N, Ullah H, Sonjaroon W, Anusontpornperm S, Arirob W, Datta A (2020) Interactive effects of silicon and soil Ph on growth, yield and nutrient uptake of maize. SILICON 13:289–299

    Google Scholar 

  • Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soleimannejad Z, Abdolzadeh A, Sadeghipour HR (2019) Beneficial effects of silicon application in alleviating salinity stress in halophytic Puccinellia distans plants. SILICON 11:1001–1010

    CAS  Google Scholar 

  • Stoughton R (1953) Sand-and water-culture of plants. Nature 171:232. https://doi.org/10.1038/171232a0

    Article  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis mechanism, regulation and adaptation. CRC Press, London. https://doi.org/10.1201/9781482268010

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Sun Z, Ren L, Fan J, Li Q, Wang K, Guo M, Wang L, Li J, Zhang G, Yang Z (2016) Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant Soil Environ 62:515–521

    CAS  Google Scholar 

  • Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Arch Agron Soil Sci 58:247–256

    CAS  Google Scholar 

  • Thorne SJ, Hartley SE, Maathuis FJ (2020) Is silicon a panacea for alleviating drought and salt stress in crops? Front Plant Sci 11:1221

    PubMed  PubMed Central  Google Scholar 

  • Ulfat M, H-u-R Athar, Khan Z-d, Kalaji HM (2020) RNAseq analysis reveals altered expression of key ion transporters causing differential uptake of selective ions in canola (Brassica napus L.) grown under NaCl stress. Plants 9:891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umar M, Uddin Z, Siddiqui Z (2019) Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. Photosynthetica 57:627–639

    CAS  Google Scholar 

  • Vafadar F, Amooaghaie R, Ehsanzadeh P, Ghanati F, Sajedi RH (2020) Crosstalk between melatonin and Ca2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. J Plant Physiol 252:153237

    CAS  PubMed  Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Tahir I (2019) Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol Biochem 135:385–394

    CAS  PubMed  Google Scholar 

  • Weimin D, Keqin Z, Binwu D, Chengxiao S, Kangle Z, Run C, Jieyun Z (2005) Rapid determination of silicon content in rice (Oryza sativa). Zhongguo Shuidao Kexue 19:460–462

    Google Scholar 

  • Xu C, Ma Y, Liu Y (2015) Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South Afric J Bot 98:26–36

    CAS  Google Scholar 

  • Yeh D, Lin L, Wright C (2000) Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot–root ratio of Spathiphyllum. Sci Horti 86:223–233

    CAS  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Turkan I (2020) Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris. Front Plant Sci 11:682

    PubMed  PubMed Central  Google Scholar 

  • Zeeshan M, Lu M, Sehar S, Holford P, Wu F (2020) Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 10:127

    CAS  Google Scholar 

  • Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y, Ahammed GJ (2019) Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9:733

    CAS  Google Scholar 

  • Zhao C, Zhang H, Song C, Zhu J-K, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. Innov 1:100017

    CAS  Google Scholar 

  • Zhu Y-X, Gong H-J, Yin J-L (2019) Role of silicon in mediating salt tolerance in plants: a review. Plants 8:147

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.S.A. and S.N.; methodology, M.R., M.N.A., and M.S.A.; software, M.A. and K.H.S.; resources, J.A and M.O.; investigation, M.S.A., S.N., and S.M.; draft preparation, M.S.A.; writing and reviewing, M.S.A. and S.N.; project administration, Z.U.Z., S.M., and S.N.

Corresponding author

Correspondence to Sibgha Noreen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhter, M.S., Noreen, S., Mahmood, S. et al. Silicon Supplement Improves Growth and Yield Under Salt Stress by Modulating Ionic Homeostasis and Some Physiological Indices in Hordeum vulgare L. J Soil Sci Plant Nutr 23, 1694–1712 (2023). https://doi.org/10.1007/s42729-023-01240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-023-01240-4

Keywords

Navigation