Skip to main content

Advertisement

Log in

Cross-Inoculation of Elite Commercial Bradyrhizobium Strains from Cowpea and Soybean in Mung Bean and Comparison with Mung Bean Isolates

  • Short Communication
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the efficiency of nodulation and N2 fixation of strains Bradyrhizobium recommended for cowpea and soybean when used as inoculants for mung bean in comparison with Bradyrhizobium isolates obtained from mung bean nodules. This study will contribute to the process of recommending an inoculant for mung bean and determine if any existing commercial inoculant is efficient in nodulation of this crop. An experiment was conducted in a greenhouse under axenic conditions for the cross-inoculation of eight elite strains used in commercial inoculants. Subsequently, the efficiency of these strains was examined in a pot experiment with non-sterile soil and compared with that of the 13 Bradyrhizobium isolates. Results revealed that the SEMIA 587 (Bradyrhizobium elkanii) strain used as commercial inoculants for soybean and the UFLA 3-84 (B. viridifuturi), BR 3267 (B. yuanmingense), and INPA 03-11B (B. elkanii) strains used for cowpea could efficiently nodulate mung bean. Conversely, BR 3262 (B. pachyrhizi) for cowpea and CPAC 15 (B. japonicum), CPAC 7 (B. diazoefficiens), and BR 29 (29 W; B. elkanii) for soybean could not achieve the same outcome. Although mung bean is considered a promiscuous legume, these results suggest the existence of symbiotic incompatibility with some Bradyrhizobium strains. The efficiency of the elite SEMIA 587 (B. elkanii) and UFLA 3–84 (B. viridifuturi) strains in terms of increased nodulation and plant growth was similar to those of Bradyrhizobium strains isolated from mung bean nodules and, therefore, should be evaluated under field conditions to verify their contribution to biological nitrogen fixation in mung bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bhuiyan MAH, Mian MH (2007) Effect of Bradyrhizobium inoculation on nodulation, biomass production and yield of mungbean. Bangladesh J Microbiol 24:95–99. https://doi.org/10.3329/bjm.v24i2.1251

    Article  Google Scholar 

  • Brasil (2011) Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa nº 13, de 24 de março de 2011, Diário Oficial da União, Nº 58, sexta-feira, 25 de março de 2011. https://www.jusbrasil.com.br/diarios/DOU/2011/03/24

  • Brockwell J, Andrews JA, Gault RR, Gemell LG, Griffith GW, Herridge DF, Holland JF, Karsono S, Peoples MB, Roughley RJ (1991) Erratic nodulation and nitrogen fixation in field-grown pigeonpea [Cajanus cajan (L.) Millsp.]. Aust J Exp Agric 31:653–661

    Article  Google Scholar 

  • Bullard GK, Roughley RJ, Pulsford DJ (2005) The legume inoculant industry and inoculant quality control in Australia: 1953–2003. Aust J Exp Agric 45:127–140. https://doi.org/10.1071/EA03159

    Article  Google Scholar 

  • Christopher M, Macdonald B, Yeates S, Ziegler D, Seymour N (2018) Wild bradyrhizobia that occur in the Burdekin region of Queensland are as effective as commercial inoculum for mungbean (Vigna radiata (L.)) and black gram (Vigna mungo (L.)) in fixing nitrogen and dry matter production. Appl Soil Ecol 124:88–94. https://doi.org/10.1016/j.apsoil.2017.11.005

    Article  Google Scholar 

  • Costa EM, Carvalho TS, Guimarães AA, Leão ACR, Cruz LM, Baura VA, Lebbe L, Willems A, Moreira FMS (2019) Classification of the inoculant strain of cowpea UFLA 03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici). Brazilian J Microbiol 50:335–345. https://doi.org/10.1007/S42770-019-00045-X

    Article  Google Scholar 

  • Delić D, Stajković-Srbinović O, Kuzmanović D, Mrvić V, Knežević-Vukčević J (2011) Effect of bradyrhizobial inoculation on growth and seed yield of mungbean in fluvisol and humofluvisol. African J Microbiol Res 5:3946–3957

    Article  Google Scholar 

  • dos Santos DMT (2020) Inoculação de feijão-mungo (Vigna radiata (L.) Wilczek) com estirpes comerciais de Bradyrhizobium: avaliação da produtividade no município de Campos dos Goytacazes – RJ. Universidade Federal Rural do Rio de Janeiro

  • Du M, Xie J, Gong B, Xu X, Tang W, Li X, Li C, Xie M (2018) Extraction, physicochemical characteristics and functional properties of mung bean protein. Food Hydrocoll 76:131–140. https://doi.org/10.1016/j.foodhyd.2017.01.003

    Article  CAS  Google Scholar 

  • Favero VO, Carvalho RH, Leite ABC, Freitas KM, Zilli JÉ, Xavier GR, Rumjanek NG, Urquiaga S (2021a) Characterization and nodulation capacity of native bacteria isolated from mung bean nodules used as a trap plant in Brazilian tropical soils. Appl Soil Ecol 167:104041. https://doi.org/10.1016/j.apsoil.2021.104041

    Article  Google Scholar 

  • Favero VO, Carvalho RH, Motta VM, Leite ABC, Coelho MRR, Xavier GR, Rumjanek NG, Urquiaga S (2021b) Bradyrhizobium as the only rhizobial inhabitant of mung bean (Vigna radiata) nodules in tropical soils: a strategy based on microbiome for improving biological nitrogen fixation using bio-products. Front Plant Sci 11:2186. https://doi.org/10.3389/fpls.2020.602645

    Article  Google Scholar 

  • Favero VO, Carvalho RH, Leite ABC, Santos DMT, Freitas KM, Boddey RM, Xavier GR, Rumjanek NG, Urquiaga S (2022) Bradyrhizobium strains from Brazilian tropical soils promote increases in nodulation, growth and nitrogen fixation in mung bean. Appl Soil Ecol 175:104461. https://doi.org/10.1016/j.apsoil.2022.104461

    Article  Google Scholar 

  • Guimarães AA, Florentino LA, Almeida KA, Lebbe L, Silva KB, Willems A, Moreira FMS (2015) High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst Appl Microbiol 38:433–441. https://doi.org/10.1016/J.SYAPM.2015.06.006

    Article  Google Scholar 

  • Guimaraes SL, Neves LCR, Bonfim-Silva EM, Campos DTS (2016) Development of pigeon pea inoculated with rhizobium isolated from cowpea trap host plants. Rev Caatinga 29:789–795. https://doi.org/10.1590/1983-21252016v29n402rc

    Article  Google Scholar 

  • Hakim S, Mirza BS, Imran A, Zaheer A, Yasmin S, Mubeen F, Mclean JE, Mirza MS (2020) Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and non-rhizobial diversity associated with root nodules of mung bean (Vigna radiata L.) growing in different habitats in Pakistan. Microbiol Res 231:126356. https://doi.org/10.1016/j.micres.2019.126356

  • Hanumantharao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957. https://doi.org/10.3389/fpls.2016.00957

  • Hayat R, Ali S, Tariq M, Chatha H (2008) Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pakistan J Bot 40:711–722

    CAS  Google Scholar 

  • Herridge DF, Robertson MJ, Cocks B, Peoples MB, Holland JF, Heuke L (2005) Low nodulation and nitrogen fixation of mungbean reduce biomass and grain yields. Aust J Exp Agric 45:269. https://doi.org/10.1071/EA03130

    Article  CAS  Google Scholar 

  • Hungria M, O’Hara GW, Zilli JE, Araujo RS, Deaker R, Howieson JG (2016) Isolation and growth of rhizobia. In: Howieson JG, Dilworth MJ (eds) Working with rhizobia. Australian Centre for International Agricultural Research, Canberra, pp 39–60

  • Islam MK, Islam SMA, Harun-or-Rashid M, Hossain AFMGF, Alom MM (2006) Effect of biofertilizer and plant growth regulators on growth of summer mungbean. Int J Bot 2:36–41

    Google Scholar 

  • Kassambara A, Mundt F (2020) Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra

  • Lacerda AM, Moreira FMS, Andrade MJB, Soares ALL (2004) Efeito de estirpes de rizóbio sobre a nodulação e produtividade do feijão-caupi. Ceres 51:67–82

    Google Scholar 

  • Lambrides CJ, Godwin ID (2007) Mungbean. In: Kole C (ed) Pulses, sugar and tuber crops. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 69–90

    Chapter  Google Scholar 

  • Leite J, Passos SR, Simões-Araújo JL, Rumjanek NG, Xavier GR, Zilli JÉ (2018) Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian J Microbiol 49:703–713. https://doi.org/10.1016/J.BJM.2017.01.007

    Article  CAS  Google Scholar 

  • Martins LMV, Xavier GR, Rangel FW, Ribeiro JRA, Neves MCP, Morgado LB, Rumjanek NG (2003) Contribution of biological nitrogen fixation to cowpea: A strategy for improving grain yield in the semi-arid region of Brazil. Biol Fertil Soils 38:333–339. https://doi.org/10.1007/s00374-003-0668-4

    Article  Google Scholar 

  • Mathu S, Herrmann L, Pypers P, Matiru V, Mwirichia R, Lesueur D (2012) Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. walp.) and green gram (Vigna radiata L. Wilczek.) yields in Kenya. Soil Sci Plant Nutr 58:750–763. https://doi.org/10.1080/00380768.2012.741041

    Article  Google Scholar 

  • Nair RM, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert AW, Hanson P (2012) Genetic improvement of mungbean. J Breed Genet 44:177–190

    Google Scholar 

  • Nguyen HP, Miwa H, Kaneko T, Sato S, Okazaki S (2017) Identification of Bradyrhizobium elkanii genes involved in incompatibility with Vigna radiata. Genes 8:374. https://doi.org/10.3390/genes8120374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira ARA, de Souza GB (2005) Manual de laboratórios: solo, água, nutrição vegetal, nutrição animal e alimentos. Embrapa Pecuária Sudeste, São Carlos, SP

    Google Scholar 

  • O’Hara GW, Hungria M, Woomer P, Howieson JG (2016) Counting rhizobia. In: Howieson JG, Dilworth MJ (eds) Working with rhizobia. Australian Centre for International Agricultural Research, Canberra, pp 109–124

  • Okazaki S, Zehner S, Hempel J, Lang K, Göttfert M (2009) Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 295:88–95. https://doi.org/10.1111/j.1574-6968.2009.01593.x

    Article  CAS  PubMed  Google Scholar 

  • Peres JRR (1979) Seleção de estirpes de Rhizobium japonicum e competitividade por sítios de infeção nodular em cultivares de soja (Glycine max (L.) Merrill). Universidade Federal do Rio Grande do Sul

    Google Scholar 

  • Piromyou P, Songwattana P, Teamtisong K, Tittabutr P, Boonkerd N, Tantasawat PA, Giraud E, Göttfert M, Teaumroong N (2019) Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia. MicrobiologyOpen 8:e00781. https://doi.org/10.1002/mbo3.781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R version 4.0.5, Vienna, Austria. https://www.R-project.org/

  • Sakia RM (1992) The Box-Cox transformation technique: a review. J R Stat Soc Ser D 41:169–178

    Google Scholar 

  • Sharma L, Priya M, Bindumadhava H, Nair RM, Nayyar H (2016) Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Sci Hortic 213:379–391. https://doi.org/10.1016/j.scienta.2016.10.033

    Article  Google Scholar 

  • Silva VB, Bomfim CSG, Sena PTS, Santos JCS, Mattos WS, Gava CAT, Souza AP, Fernandes-Júnior PI (2021) Vigna spp. root-nodules harbor potentially pathogenic fungi controlled by co-habiting bacteria. Curr Microbiol 1:3. https://doi.org/10.1007/s00284-021-02455-3

  • Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M (2014) Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 15:1–21. https://doi.org/10.1186/1471-2164-15-420

    Article  CAS  Google Scholar 

  • Songwattana P, Noisangiam R, Teamtisong K, Prakamhang J, Teulet A, Tittabutr P, Piromyou P, Boonkerd N, Giraud E, Teaumroong N (2017) Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Front Microbiol 8:1810. https://doi.org/10.3389/fmicb.2017.01810

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza JAM, Tieppo E, Magnani GS, Alves LMC, Cardoso RL, Cruz LM, Oliveira LF, Raittz RT, Souza EM, Oliveira Pedrosa F, Lemos EMG (2012) Draft genome sequence of the nitrogen-fixing symbiotic bacterium Bradyrhizobium elkanii 587. J Bacteriol 194:3547–3548. https://doi.org/10.1128/JB.00563-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Ali A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. African J Biotechnol 11:15012–15019. https://doi.org/10.5897/ajb11.3438

    Article  CAS  Google Scholar 

  • Vargas MAT, Mendes IC, Suhet AR, Peres JRR (1992) Duas novas estirpes de rizóbio para a inoculação da soja. Embrapa Cerrados-Comunicado Técnico (INFOTECA-E)

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

  • Vieira RF, Carneiro JES, Júnior P, Araújo RF (2008) MGS Esmeralda: new large seed mungbean cultivar. Pesqui Agropecuária Bras 43:781–782. https://doi.org/10.1590/S0100-204X2008000600015

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publications, Oxford, United Kingdom

    Google Scholar 

  • Wu Y, Li YH, Shang JY, Wang ET, Chen L, Huo B, Sui XH, Tian CF, Chen WF, Chen WX (2020) Multiple genes of symbiotic plasmid and chromosome in type II peanut Bradyrhizobium strains corresponding to the incompatible symbiosis with Vigna radiata. Front Microbiol 11:1175. https://doi.org/10.3389/fmicb.2020.01175

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JK, Yuan TY, Zhang WT, Zhou JC, Li YG (2008) Polyphasic characterization of mung bean (Vigna radiata L.) rhizobia from different geographical regions of China. Soil Biol Biochem 40:1681–1688. https://doi.org/10.1016/j.soilbio.2008.02.002

    Article  CAS  Google Scholar 

  • Yates RJ, Howieson JG, Hungria M, Bala A, O’Hara GW, Terpolilli JJ (2016) Authentication of rhizobia and assessment of the legume symbiosis in controlled plant growth systems. In: Howieson JG, Dilworth MJ (eds) Working with rhizobia. Australian Centre for International Agricultural Research, Canberra, pp 73–108

  • Zhang YF, Wang ET, Tian CF, Wang FQ, Han LL, Chen WF, Chen WX (2008) Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. FEMS Microbiol Lett 285:146–154. https://doi.org/10.1111/j.1574-6968.2008.01169.x

    Article  CAS  PubMed  Google Scholar 

  • Zilli JE, Xavier GR, Rumjanek NG (2008) BR 3262: nova estirpe de Bradyrhizobium para a inoculação de feijão-caupi em Roraima. Embrapa Roraima, 7p. (Comunicado técnico, 10)

  • Zilli JÉ, da Silva Neto ML, França Júnior I, Perin L, de Melo AR (2011) Resposta do feijão-caupi à inoculação com estirpes de Bradyrhizobium recomendadas para a soja. Rev Bras Ciência do Solo 35:739–742. https://doi.org/10.1590/S0100-06832011000300009

    Article  Google Scholar 

Download references

Funding

This work was supported by the Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (FAPERJ) [Project: E-26/202.546/2019], the Coordination for the Improvement of Higher Education Personnel (CAPES)-Financing Code 001, and the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Segundo Urquiaga.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favero, V.O., de Carvalho, R.H., Leite, A.B.C. et al. Cross-Inoculation of Elite Commercial Bradyrhizobium Strains from Cowpea and Soybean in Mung Bean and Comparison with Mung Bean Isolates. J Soil Sci Plant Nutr 22, 4356–4364 (2022). https://doi.org/10.1007/s42729-022-01034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-022-01034-0

Keywords

Navigation