Skip to main content
Log in

Optimal Two- and Three-Dimensional Earth–Moon Orbit Transfers

  • Original article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The determination of minimum-propellant-consumption trajectories represents a crucial issue for the purpose of planning robotic and human missions to the Moon in the near future. This work addresses the problem of identifying minimum-fuel orbit transfers from a specified low Earth orbit (LEO) to a low Moon orbit (LMO), under the assumption of employing high-thrust propulsion. The problem at hand is solved in the dynamical framework of the circular restricted three-body problem. First, the optimal two-dimensional LEO-to-LMO transfer is determined. Second, three-dimensional transfers are considered, in a dynamical model that includes the Cassini’s laws of lunar motion. The propellant consumption associated with three-dimensional transfers turns out to be relatively insensitive to the final orbit inclination and exceeds only marginally the value of the globally optimal two-dimensional orbit transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clarke, V.C.: Design of lunar and interplanetary ascent trajectories. AIAA J. 1(7), 1559–1567 (1963)

    Article  Google Scholar 

  2. Miele. Theorem of image trajectories in the earth-moon space. Astronautica Acta, 6(51), 225–232 (1960).

  3. Miner, W.E., Andrus, J.F.: Necessary conditions for optimal lunar trajectories with discontinuous state variables and intermediate point constraints. AIAA J. 6(11), 2154–2159 (1968)

    Article  Google Scholar 

  4. Mancuso, M.S.: Optimal trajectories for earth-moon-earth flight. Acta Astronaut. 49(2), 59–71 (2001)

    Article  Google Scholar 

  5. Bollt, E.M., Meiss, J.D.: Targeting chaotic orbits to the moon through recurrence. Phys. Lett. A 204(5–6), 373–378 (1995)

    Article  Google Scholar 

  6. Schroer, C.G., Ott, E.: Targeting in hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7(4), 512–519 (1997)

    Article  MathSciNet  Google Scholar 

  7. Mengali, G., Quarta, A.: Optimization of biimpulsive trajectories in the earth-moon restricted three-body problem. J. Guidance Control Dyn. 28(2), 209–216 (2005)

    Article  Google Scholar 

  8. Belbruno, E.A., Miller, J.K.: Sun-peturbed earth-to-moon transfers with ballistic capture. J. Guidance Control Dyn. 16(4), 770–775 (1993)

    Article  Google Scholar 

  9. Pontani, M., Teofilatto, P.: Polyhedral representation of invariant manifolds applied to orbit transfers in the Earth-Moon system. Acta Astronaut. 119, 218–232 (2016)

    Article  Google Scholar 

  10. Ozimek, M.T., Howell, K.C.: Low-thrust transfers in the earth-moon system including applications to libration point orbits. J. Guidance Control Dyn. 33(2), 533–549 (2010)

    Article  Google Scholar 

  11. Herman, L., Conway, B.A.: Optimal, low-thrust, earth-moon orbit transfer. J Guidance Control Dyn. 21(1), 141–147 (1998)

    Article  Google Scholar 

  12. Bonnard, J.-B.C.: Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust. Ann. L’Institut Henri Poincaré 24, 395–411 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Bonnard, B., Caillau, J.-B., Dujol, R.: Energy minimization of single input orbit transfer by averaging and continuation. Bull. Sci. Math. 130, 707–719 (2006)

    Article  MathSciNet  Google Scholar 

  14. Kluever, A., Pierson, B.L.: Optimal Earth-Moon trajectories using nuclear electric propulsion. J. Guidance Control Dyn. 20(2), 239–245 (1997)

    Article  Google Scholar 

  15. Kluever, C.A., Pierson, B.L.: Optimal low-thrust three-dimensional Earth-Moon trajectories. J Guidance Control Dyn. 18(4), 830–837 (1995)

    Article  Google Scholar 

  16. Kluever, C.A.: Optimal Earth-Moon trajectories using combined chemical-electric propulsion. J Guidance Control Dyn. 20(2), 253–258 (1997)

    Article  Google Scholar 

  17. Szebehely, V.: Theory of Orbits in the Restricted Problem of Three Bodies, pp. 7–22. Academic Press, London (1967)

    MATH  Google Scholar 

  18. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics, p. 333. Dover, New York (1971)

    Google Scholar 

  19. Pontani, M., Conway, B.: Particle swarm optimization applied to space trajectories. J. Guidance Control Dyn. 33(5), 1429–1441 (2010)

    Article  Google Scholar 

  20. Pontani, M., Conway, B.A.: Optimal low-thrust orbital maneuvers via indirect swarming method. J. Optim. Theory Appl. 162(1), 272–292 (2014)

    Article  MathSciNet  Google Scholar 

  21. Pontani, M., Conway, B.A.: Particle swarm optimization applied to impulsive orbital transfers. Acta Astronaut. 74, 141–155 (2012)

    Article  Google Scholar 

  22. Pontani, M., Ghosh, P., Conway, B.: Particle swarm optimization of multiple-burn rendezvous trajectories. J. Guidance Control Dyn. 35(4), 1192–1207 (2012)

    Article  Google Scholar 

  23. Pontani, M.: Particle swarm optimization of ascent trajectories of multistage launch vehicles. Acta Astronaut. 94(2), 852–864 (2014)

    Article  Google Scholar 

  24. Roy, E.: Orbital Motion, pp. 20–28. IOP Publishing Ltd., London (2005). 304-305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Leonardi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonardi, E.M., Pontani, M. Optimal Two- and Three-Dimensional Earth–Moon Orbit Transfers. Aerotec. Missili Spaz. 99, 195–202 (2020). https://doi.org/10.1007/s42496-020-00046-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-020-00046-2

Keywords

Navigation