Skip to main content
Log in

Modeling and Theoretical Investigation of Nonlinear Torsional Characteristics for Double-Helical Star Gearing System in GTF Gearbox

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

A improved torsional nonlinear dynamic model of double-helical star gearing system of Geared Turbofan (GTF) aero-engine is established, considering multiple nonlinear parameters and the effect of tool withdrawal groove that connect helical gears on both sides of double-helical gear. The dynamic responses of the system are solved by Runge–Kutta numerical integration method. The results reveal that the double-helical star gearing system exhibits abundant torsional nonlinear behaviors, which were illustrated by the evolution curve of dynamic meshing force and load sharing coefficient under varying rotational speed, gear backflash and width of groove, with either side of helical gear pairs in double-helical gear system are considered and illustrated, respectively, which can be hardly seen in previous research and worth being analyzed for better understanding of undesirable torsional dynamic motion for the double-helical gear system and therefore provide a reference for the design and control of gear system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\({L}_{t}^{L},\) \({L}_{t}^{R},\) \({L}_{c}\) :

Gear width of left, right sided helical gear, width of tool withdrawal groove

\({k}_{ij},\) \({c}_{ij}\) :

Stiffness, damping influence coefficient for tool withdrawal groove

\({R}_{\mathrm{inner}},\) \({R}_{\mathrm{outer}}\) :

Inner and outer radii of rotational component

\({\beta }_{b}\) :

Helix angle in base circle of gear

\({R}_{c},\) \({r}_{c}\) :

Radius of outer, inner circle of groove

\({D}_{c},\) \({d}_{c}\) :

Diameter of outer, inner circle of groove

\({I}_{s},\) \({l}_{s}\) :

Area moment of inertia, torsional length

\({k}_{s},\) \({c}_{s}\) :

Torsional stiffness, torsional damping of rotational component

\({Z}_{s}\), \({Z}_{p}\), \({Z}_{r}\) :

Gear tooth number of sun gear, star gear, and ring gear

\({L}_{sp}\), \({L}_{rp}\) :

Contact length for external, and internal gear meshing pair

\({k}_{sp}\), \({c}_{sp}\), \({k}_{rp}\), \({c}_{rp}\) :

Meshing stiffness and damping of sun–star, and star–ring gear meshing pair

\({k}_{p}\), \({c}_{p}\), \({k}_{g}\), \({c}_{g}\) :

Torsional stiffness, damping of pinion and gear

\({b}_{sp}\), \({b}_{rp}\) :

Gear backlash of sun–star, and star–ring gear meshing pair

\({\alpha }_{sp}\),\({ \alpha }_{pr}\) :

Meshing angle of the external and internal meshes

\({\delta }_{sp}\), \({\delta }_{rp}\) :

Relative displacement of the external, internal gear pair along the meshing line

\({\theta }_{s}, {\theta }_{p}, {\theta }_{r}\) :

Angular displacement of sun gears, star gear and ring gear

\({e}_{sp}\), \({e}_{rp}\) :

Comprehensive meshing error of external, internal gear meshing pair

\({\varepsilon }_{\alpha }\), \({\varepsilon }_{\beta }\) :

Transverse contact ratio, axial contact ratio of helical gear meshing pair

\({\xi }_{sp}\), \({\xi }_{pr}\), \({\xi }_{t}\) :

Meshing damping ratio of external, internal gear meshing pair, torsional damping ratio

\({r}_{bs}\), \({r}_{bp},\) \({r}_{br}\) :

Radius of base circle for sun gear, star gear and ring gear

\({J}_{s}\), \({J}_{p},\) \({J}_{r}\) :

Torsional inertia for sun gear, star gear and ring gear

\({\lambda }_{sp},\) \({\lambda }_{rp},\) \({\lambda }_{sr}\) :

Coefficient of meshing phase for external, internal, and external-internal gear pair

\({F}_{sp},\) \({F}_{rp}\) :

Meshing force of sun–star, star–ring gear meshing pair

\({F}_{km},\) \({F}_{cm}\) :

Elastic meshing force and viscous meshing force component

\({\mathrm{LSC}}_{sp},\) \({\mathrm{LSC}}_{rp}\) :

Load sharing coefficient of external, internal gear meshing pair

\({T}_{\mathrm{in}}\), \({T}_{\mathrm{out}}\) :

Input torque, output torque

\(L, R\): Left-side helical gear:

Right-side helical gear of double-helical gear

\(p, g\): Pinion (driving gear):

Gear (driven gear)

\(s, p, r\): Sun gear:

Star gear, ring gear

\(sp, rp\): External gear pair (sun–star gear pair):

Internal gear pair (star-ring gear pair)

References

  1. Nadolski W, Pielorz A (2001) Theoretical investigations of nonlinear loads on gear teeth in single gear transmission. Int J Mech Sci 43(2):299–311. https://doi.org/10.1016/S0020-7403(00)00026-6

    Article  MATH  Google Scholar 

  2. Chang-Jian C-W, Chang S-M (2011) Bifurcation and chaos analysis of spur gear pair with and without nonlinear suspension. Nonlinear Anal Real World Appl 12(2):979–989. https://doi.org/10.1016/j.nonrwa.2010.08.021

    Article  MathSciNet  MATH  Google Scholar 

  3. He S, Cho S, Singh R (2008) Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations. J Sound Vib 309(3–5):843–851. https://doi.org/10.1016/j.jsv.2007.06.077

    Article  Google Scholar 

  4. He S, Gunda R, Singh R (2007) Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness. J Sound Vib 301(3–5):927–949. https://doi.org/10.1016/j.jsv.2006.10.043

    Article  Google Scholar 

  5. Yang J, Peng T, Lim TC (2012) An enhanced multi-term harmonic balance solution for nonlinear period-one dynamic motions in right-angle gear pairs. Nonlinear Dyn 67(2):1053–1065. https://doi.org/10.1007/s11071-011-0048-9

    Article  MathSciNet  Google Scholar 

  6. Wang C et al (2016) Modified optimization and experimental investigation of transmission error, vibration and noise for double helical gears. J Vib Control 22(1):108–120. https://doi.org/10.1177/1077546314525216

    Article  Google Scholar 

  7. Wang Ji, Zheng J, Yang A (2012) An analytical study of bifurcation and chaos in a spur gear pair with sliding friction. Procedia Eng 31:563–570. https://doi.org/10.1016/j.proeng.2012.01.1068

    Article  Google Scholar 

  8. Yang Y et al (2019) Vibration analysis for tooth crack detection in a spur gear system with clearance nonlinearity. Int J Mech Sci 157:648–661. https://doi.org/10.1016/j.ijmecsci.2019.05.012

    Article  Google Scholar 

  9. Wang J et al (2017) Nonlinear dynamics analysis of the spur gear system for railway locomotive. Mech Syst Signal Process 85:41–55. https://doi.org/10.1016/j.ymssp.2016.08.004

    Article  Google Scholar 

  10. Wang J et al (2019) Nonlinear characteristics of a multi-degree-of-freedom spur gear system with bending-torsional coupling vibration. Mech Syst Signal Process 121:810–827. https://doi.org/10.1016/j.ymssp.2018.12.002

    Article  Google Scholar 

  11. Gürkan NE, Nevzat Özgüven H (2007) “Interactions between backlash and bearing clearance nonlinearity in geared flexible rotors.” ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Am Soc Mech Eng. https://doi.org/10.1115/DETC2007-34101

    Article  Google Scholar 

  12. Baguet S, Jacquenot G (2010) Nonlinear couplings in a gear-shaft-bearing system. Mech Mach Theory 45(12):1777–1796. https://doi.org/10.1016/j.mechmachtheory.2010.08.009

    Article  MATH  Google Scholar 

  13. Siyu C et al (2011) Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mech Mach Theory 46(4):466–478. https://doi.org/10.1016/j.mechmachtheory.2010.11.016

    Article  MATH  Google Scholar 

  14. Chang-Jian C-W (2015) Bifurcation and chaos of gear-rotor–bearing system lubricated with couple-stress fluid. Nonlinear Dyn 79(1):749–763. https://doi.org/10.1007/s11071-014-1701-x

    Article  Google Scholar 

  15. Han Q et al (2014) Steady-state response of a geared rotor system with slant cracked shaft and time-varying mesh stiffness. Commun Nonlinear Sci Numer Simul 19(4):1156–1174. https://doi.org/10.1016/j.cnsns.2013.08.018

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou S et al (2015) Dynamic characteristics analysis of the coupled lateral-torsional vibration with spur gear system. Int J Rotat Mach. https://doi.org/10.1155/2015/371408

    Article  Google Scholar 

  17. Guo Yi, Parker RG (2010) Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity. Eur J Mech 29(6):1022–1033. https://doi.org/10.1016/j.euromechsol.2010.05.001

    Article  MATH  Google Scholar 

  18. Kim W, Yoo HH, Chung J (2010) Dynamic analysis for a pair of spur gears with translational motion due to bearing deformation. J Sound Vib 329(21):4409–4421. https://doi.org/10.1016/j.jsv.2010.04.026

    Article  Google Scholar 

  19. Bahk C-J, Parker RG (2011) Analytical solution for the nonlinear dynamics of planetary gears. J Comput Nonlinear Dyn 6(2):021007. https://doi.org/10.1115/1.4002392

    Article  Google Scholar 

  20. Rao Z et al (2014) Nonlinear torsional instabilities in two-stage gear systems with flexible shafts. Int J Mech Sci 82:60–66. https://doi.org/10.1016/j.ijmecsci.2014.02.021

    Article  Google Scholar 

  21. Xiang L, Gao N, Aijun Hu (2018) Dynamic analysis of a planetary gear system with multiple nonlinear parameters. J Comput Appl Math 327:325–340. https://doi.org/10.1016/j.cam.2017.06.021

    Article  MathSciNet  MATH  Google Scholar 

  22. Xiang L et al (2018) Nonlinear dynamics of a multistage gear transmission system with multi-clearance. Int J Bifurc Chaos 28(3):1850034. https://doi.org/10.1142/S0218127418500347

    Article  MathSciNet  MATH  Google Scholar 

  23. Hou L, Cao S (2019) Nonlinear dynamic analysis on planetary gears-rotor system in geared turbofan engines. Int J Bifurc Chaos 29(06):1950076. https://doi.org/10.1142/S0218127419500767

    Article  MathSciNet  Google Scholar 

  24. Abousleiman V, Velex P, Becquerelle S (2007) Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers. J Mech Des. https://doi.org/10.1115/1.2359468

    Article  Google Scholar 

  25. Kahraman A, Ligata H, Singh A (2010) Influence of ring gear rim thickness on planetary gear set behavior. J Mech Des. https://doi.org/10.1115/1.4000699

    Article  Google Scholar 

  26. Montestruc AN (2011) Influence of planet pin stiffness on load sharing in planetary gear drives. J Mech Des. https://doi.org/10.1115/1.4002971

    Article  Google Scholar 

  27. Hu Y, David T, Ahmet K (2018) A load distribution model for planetary gear sets. J Mech Des. https://doi.org/10.1115/1.4039337

    Article  Google Scholar 

  28. Hu Y, David T, Ahmet K (2019) A gear load distribution model for a planetary gear set with a flexible ring gear having external splines. J Mech Des. https://doi.org/10.1115/1.4041583

    Article  Google Scholar 

  29. Jin G et al (2019) Influence of backlash on load sharing and dynamic load characteristics of twice split torque transmission system. J Vib Eng Technol 7(6):565–577. https://doi.org/10.1007/s42417-019-00150-z

    Article  Google Scholar 

  30. Wang S, Zhu R (2020) Study on load sharing behavior of coupling gear-rotor-bearing system of GTF aero-engine based on multi-support of rotors. Mech Mach Theory 147:103764. https://doi.org/10.1016/j.mechmachtheory.2019.103764

    Article  Google Scholar 

  31. Wang S, Zhu R (2020) Nonlinear torsional dynamics of star gearing transmission system of GTF gearbox. Shock Vib. https://doi.org/10.1155/2020/6206418

    Article  Google Scholar 

  32. Shuai M et al (2020) Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear. Mech Mach Theory 144:103670. https://doi.org/10.1016/j.mechmachtheory.2019.103670

    Article  Google Scholar 

  33. Mo S et al (2020) Analytical investigation on load-sharing characteristics for multi-power face gear split flow system. Proc Inst Mech Eng Part C 234(2):676–692. https://doi.org/10.1177/0954406219876954

    Article  Google Scholar 

  34. Maatar M, Velex P (1996) An analytical expression for the time-varying contact length in perfect cylindrical gears some possible applications in gear dynamics. J Mech Des 118(12):586–589. https://doi.org/10.1115/1.2826933

    Article  Google Scholar 

  35. Parker RG (2000) A physical explanation of the effectiveness of planet phasing to suppress planetary gear vibration. J Sound Vib 236(4):561–573. https://doi.org/10.1006/jsvi.1999.2859

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (Grant No. 2018YFB2001300); National Natural Science Foundation of China (Grant No. 51775265); the China Scholarship Council (202006830075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siyu Wang or Rupeng Zhu.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhu, R. Modeling and Theoretical Investigation of Nonlinear Torsional Characteristics for Double-Helical Star Gearing System in GTF Gearbox. J. Vib. Eng. Technol. 10, 193–209 (2022). https://doi.org/10.1007/s42417-021-00371-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00371-1

Keywords

Navigation