Skip to main content

Advertisement

Log in

Excessive Activation of NMDA Receptors in the Pathogenesis of Multiple Peripheral Organs via Mitochondrial Dysfunction, Oxidative Stress, and Inflammation

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

It has been well-acknowledged that N-methyl-D-aspartate receptors (NMDARs) in central nervous system play an important role in both physiological functions of neurons and the pathophysiological progression of various neurodegenerative diseases. Besides, the receptors have also been found to present extensively in peripheral organs, such as lungs, kidneys, heart, and pancreas. Under various pathological conditions, peripheral NMDARs are upregulated and excessively activated, initiating calcium influx and intracellular calcium overloading. Subsequently, mitochondrial dysfunction, oxidative stress, and pro-inflammatory signaling pathway activation ultimately aggravate tissue damage and organ dysfunction. In addition, excessive activation of NMDARs also directly initiates mitochondrial apoptosis in many organs. Here, we discuss pathophysiological roles of NMDARs in cardiovascular system, lungs, kidneys, and pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bartlett TE, Wang YT. The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology. 2013;74:59–68. https://doi.org/10.1016/j.neuropharm.2013.01.012.

    Article  PubMed  CAS  Google Scholar 

  2. Lin CH, Huang YJ, Lin CJ, Lane HY, Tsai GE. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer's disease. Curr Pharm Des. 2014;20(32):5169–79. https://doi.org/10.2174/1381612819666140110115603.

    Article  PubMed  CAS  Google Scholar 

  3. Aida T, Ito Y, Takahashi YK, Tanaka K. Overstimulation of NMDA receptors impairs early brain development in vivo. PLoS One. 2012;7(5):e36853. https://doi.org/10.1371/journal.pone.0036853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT, et al. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer's disease, vascular dementia and Parkinson's disease. Curr Alzheimer Res. 2012;9(6):746–58. https://doi.org/10.2174/156720512801322564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gonzalez J, Jurado-Coronel JC, Avila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci. 2015;125(5):315–27. https://doi.org/10.3109/00207454.2014.940941.

    Article  PubMed  CAS  Google Scholar 

  6. Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, et al. Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med. 2015;21(4):363–72. https://doi.org/10.1038/nm.3822.

    Article  PubMed  CAS  Google Scholar 

  7. Santiago AR, Gaspar JM, Baptista FI, Cristovao AJ, Santos PF, Kamphuis W, et al. Diabetes changes the levels of ionotropic glutamate receptors in the rat retina. Mol Vis. 2009;15:1620–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Dryer SE. Glutamate receptors in the kidney. Nephrol Dial Transplant. 2015;30(10):1630–8. https://doi.org/10.1093/ndt/gfv028.

    Article  PubMed  CAS  Google Scholar 

  9. Gill S, Veinot J, Kavanagh M, Pulido O. Human heart glutamate receptors - implications for toxicology, food safety, and drug discovery. Toxicol Pathol. 2007;35(3):411–7. https://doi.org/10.1080/01926230701230361.

    Article  PubMed  CAS  Google Scholar 

  10. Hogan-Cann AD, Anderson CM. Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol Sci. 2016;37(9):750–67. https://doi.org/10.1016/j.tips.2016.05.012.

    Article  PubMed  CAS  Google Scholar 

  11. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl 1):S191–203.

    Article  PubMed  CAS  Google Scholar 

  12. Misra C, Restituito S, Ferreira J, Rameau GA, Fu J, Ziff EB. Regulation of synaptic structure and function by palmitoylated AMPA receptor binding protein. Mol Cell Neurosci. 2010;43(4):341–52. https://doi.org/10.1016/j.mcn.2010.01.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Millan MJ. N-methyl-D-aspartate receptor-coupled glycineB receptors in the pathogenesis and treatment of schizophrenia: a critical review. Curr Drug Targets CNS Neurol Disord. 2002;1(2):191–213. https://doi.org/10.2174/1568007024606258.

    Article  PubMed  CAS  Google Scholar 

  14. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400. https://doi.org/10.1038/nrn3504.

    Article  PubMed  CAS  Google Scholar 

  15. Sanz-Clemente A, Nicoll RA, Roche KW. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist. 2013;19(1):62–75. https://doi.org/10.1177/1073858411435129.

    Article  PubMed  CAS  Google Scholar 

  16. Wyllie DJ, Livesey MR, Hardingham GE. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology. 2013;74:4–17. https://doi.org/10.1016/j.neuropharm.2013.01.016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cavara NA, Hollmann M. Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol. 2008;38(1):16–26. https://doi.org/10.1007/s12035-008-8029-9.

    Article  PubMed  CAS  Google Scholar 

  18. Pachernegg S, Strutz-Seebohm N, Hollmann M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 2012;35(4):240–9. https://doi.org/10.1016/j.tins.2011.11.010.

    Article  PubMed  CAS  Google Scholar 

  19. Madry C, Betz H, Geiger JR, Laube B. Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca-dependent outward rectification. Front Mol Neurosci. 2010;3:6. https://doi.org/10.3389/fnmol.2010.00006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol. 2018;150(8):1081–105. https://doi.org/10.1085/jgp.201812032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344(6187):992–7. https://doi.org/10.1126/science.1251915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511(7508):191–7. https://doi.org/10.1038/nature13548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhu S, Paoletti P. Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol. 2015;20:14–23. https://doi.org/10.1016/j.coph.2014.10.009.

    Article  PubMed  CAS  Google Scholar 

  24. Shang LH, Luo ZQ, Deng XD, Wang MJ, Huang FR, Feng DD, et al. Expression of N-methyl-D-aspartate receptor and its effect on nitric oxide production of rat alveolar macrophages. Nitric Oxide. 2010;23(4):327–31. https://doi.org/10.1016/j.niox.2010.09.004.

    Article  PubMed  CAS  Google Scholar 

  25. Shen L, Li L, She H, Yue S, Li C, Luo Z. Inhibition of pulmonary surfactants synthesis during N-methyl-D-aspartate-induced lung injury. Basic Clin Pharmacol Toxicol. 2010;107(3):751–7. https://doi.org/10.1111/j.1742-7843.2010.00572.x.

    Article  PubMed  CAS  Google Scholar 

  26. Dickman KG, Youssef JG, Mathew SM, Said SI. Ionotropic glutamate receptors in lungs and airways: molecular basis for glutamate toxicity. Am J Respir Cell Mol Biol. 2004;30(2):139–44. https://doi.org/10.1165/rcmb.2003-0177OC.

    Article  PubMed  CAS  Google Scholar 

  27. Li X, Li C, Tang Y, Huang Y, Cheng Q, Huang X, et al. NMDA receptor activation inhibits the antifibrotic effect of BM-MSCs on bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2018;315(3):L404–L21. https://doi.org/10.1152/ajplung.00002.2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Said SI. Glutamate receptors and asthmatic airway disease. Trends Pharmacol Sci. 1999;20(4):132–4. https://doi.org/10.1016/s0165-6147(98)01275-9.

    Article  PubMed  CAS  Google Scholar 

  29. Polak MJ, Xiao S, Ashton CA, Baylis C. Nmda alters the development of hypoxic pulmonary vasoconstriction and nitric oxide synthetase activity in the isolated perfused rat lung. Exp Lung Res. 2002;28(3):251–63. https://doi.org/10.1080/019021402753570536.

    Article  PubMed  CAS  Google Scholar 

  30. Wang M, Luo Z, Yue Y, Wang Y, Wu S, Cao C, et al. The excitotoxity of NMDA receptor NR2D subtype mediates human fetal lung fibroblasts proliferation and collagen production. Toxicol in Vitro. 2018;46:47–57. https://doi.org/10.1016/j.tiv.2017.10.008.

    Article  PubMed  CAS  Google Scholar 

  31. Liao Z, Zhou X, Luo Z, Huo H, Wang M, Yu X, et al. N-methyl-D-aspartate receptor excessive activation inhibited fetal rat lung development in vivo and in vitro. Biomed Res Int. 2016;2016:5843981–11. https://doi.org/10.1155/2016/5843981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Robertson BS, Satterfield BE, Said SI, Dey RD. N-methyl-D-aspartate receptors are expressed by intrinsic neurons of rat larynx and esophagus. Neurosci Lett. 1998;244(2):77–80. https://doi.org/10.1016/s0304-3940(98)00130-x.

    Article  PubMed  CAS  Google Scholar 

  33. Leung JC, Travis BR, Verlander JW, Sandhu SK, Yang SG, Zea AH, et al. Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R964–71. https://doi.org/10.1152/ajpregu.00629.2001.

    Article  PubMed  Google Scholar 

  34. Nesterov SV, Skorobogatova YA, Panteleeva AA, Pavlik LL, Mikheeva IB, Yaguzhinsky LS, et al. NMDA and GABA receptor presence in rat heart mitochondria. Chem Biol Interact. 2018;291:40–6. https://doi.org/10.1016/j.cbi.2018.06.004.

    Article  PubMed  CAS  Google Scholar 

  35. Makhro A, Tian Q, Kaestner L, Kosenkov D, Faggian G, Gassmann M, et al. Cardiac N-methyl D-aspartate receptors as a pharmacological target. J Cardiovasc Pharmacol. 2016;68(5):356–73. https://doi.org/10.1097/FJC.0000000000000424.

    Article  PubMed  CAS  Google Scholar 

  36. Rastaldi MP, Armelloni S, Berra S, Calvaresi N, Corbelli A, Giardino LA, et al. Glomerular podocytes contain neuron-like functional synaptic vesicles. FASEB J. 2006;20(7):976–8. https://doi.org/10.1096/fj.05-4962fje.

    Article  PubMed  CAS  Google Scholar 

  37. Ma MC, Huang HS, Chen YS, Lee SH. Mechanosensitive N-methyl-D-aspartate receptors contribute to sensory activation in the rat renal pelvis. Hypertension. 2008;52(5):938–44. https://doi.org/10.1161/HYPERTENSIONAHA.108.114116.

    Article  PubMed  CAS  Google Scholar 

  38. Yang CC, Chien CT, Wu MH, Ma MC, Chen CF. NMDA receptor blocker ameliorates ischemia-reperfusion-induced renal dysfunction in rat kidneys. Am J Physiol Renal Physiol. 2008;294(6):F1433–40. https://doi.org/10.1152/ajprenal.00481.2007.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang C, Yi F, Xia M, Boini KM, Zhu Q, Laperle LA, et al. NMDA receptor-mediated activation of NADPH oxidase and glomerulosclerosis in hyperhomocysteinemic rats. Antioxid Redox Signal. 2010;13(7):975–86. https://doi.org/10.1089/ars.2010.3091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Giardino L, Armelloni S, Corbelli A, Mattinzoli D, Zennaro C, Guerrot D, et al. Podocyte glutamatergic signaling contributes to the function of the glomerular filtration barrier. J Am Soc Nephrol. 2009;20(9):1929–40. https://doi.org/10.1681/ASN.2008121286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Deng A, Thomson SC. Renal NMDA receptors independently stimulate proximal reabsorption and glomerular filtration. Am J Physiol Renal Physiol. 2009;296(5):F976–82. https://doi.org/10.1152/ajprenal.90391.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Roshanravan H, Kim EY, Dryer SE. NMDA receptors as potential therapeutic targets in diabetic nephropathy: increased renal NMDA receptor subunit expression in Akita mice and reduced nephropathy following sustained treatment with memantine or MK-801. Diabetes. 2016;65(10):3139–50. https://doi.org/10.2337/db16-0209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim EY, Anderson M, Dryer SE. Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death. Mol Pharmacol. 2012;82(4):728–37. https://doi.org/10.1124/mol.112.079376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bozic M, de Rooij J, Parisi E, Ortega MR, Fernandez E, Valdivielso JM. Glutamatergic signaling maintains the epithelial phenotype of proximal tubular cells. J Am Soc Nephrol. 2011;22(6):1099–111. https://doi.org/10.1681/ASN.2010070701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sproul A, Steele SL, Thai TL, Yu S, Klein JD, Sands JM, et al. N-methyl-D-aspartate receptor subunit NR3a expression and function in principal cells of the collecting duct. Am J Physiol Renal Physiol. 2011;301(1):F44–54. https://doi.org/10.1152/ajprenal.00666.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Inagaki N, Kuromi H, Gonoi T, Okamoto Y, Ishida H, Seino Y, et al. Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J. 1995;9(8):686–91.

    Article  CAS  PubMed  Google Scholar 

  47. Gonoi T, Mizuno N, Inagaki N, Kuromi H, Seino Y, Miyazaki J, et al. Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem. 1994;269(25):16989–92.

    PubMed  CAS  Google Scholar 

  48. Molnar E, Varadi A, McIlhinney RA, Ashcroft SJ. Identification of functional ionotropic glutamate receptor proteins in pancreatic beta-cells and in islets of Langerhans. FEBS Lett. 1995;371(3):253–7. https://doi.org/10.1016/0014-5793(95)00890-l.

    Article  PubMed  CAS  Google Scholar 

  49. Wu Y, Fortin DA, Cochrane VA, Chen PC, Shyng SL. NMDA receptors mediate leptin signaling and regulate potassium channel trafficking in pancreatic beta-cells. J Biol Chem. 2017;292(37):15512–24. https://doi.org/10.1074/jbc.M117.802249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529–31. https://doi.org/10.1038/325529a0.

    Article  PubMed  CAS  Google Scholar 

  51. Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241(4867):835–7. https://doi.org/10.1126/science.2841759.

    Article  PubMed  CAS  Google Scholar 

  52. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 2002;415(6873):793–8. https://doi.org/10.1038/nature715.

    Article  PubMed  CAS  Google Scholar 

  53. Chen PE, Geballe MT, Katz E, Erreger K, Livesey MR, O'Toole KK, et al. Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J Physiol. 2008;586(1):227–45. https://doi.org/10.1113/jphysiol.2007.143172.

    Article  PubMed  CAS  Google Scholar 

  54. Erreger K, Geballe MT, Kristensen A, Chen PE, Hansen KB, Lee CJ, et al. Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol Pharmacol. 2007;72(4):907–20. https://doi.org/10.1124/mol.107.037333.

    Article  PubMed  CAS  Google Scholar 

  55. Paoletti P, Neyton J, Ascher P. Glycine-independent and subunit-specific potentiation of NMDA responses by extracellular Mg2+. Neuron. 1995;15(5):1109–20. https://doi.org/10.1016/0896-6273(95)90099-3.

    Article  PubMed  CAS  Google Scholar 

  56. Mullasseril P, Hansen KB, Vance KM, Ogden KK, Yuan H, Kurtkaya NL, et al. A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nat Commun. 2010;1(1):90. https://doi.org/10.1038/ncomms1085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Koch A, Bonus M, Gohlke H, Klocker N. Isoform-specific inhibition of N-methyl-D-aspartate receptors by bile salts. Sci Rep. 2019;9(1):10068. https://doi.org/10.1038/s41598-019-46496-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Feng B, Morley RM, Jane DE, Monaghan DT. The effect of competitive antagonist chain length on NMDA receptor subunit selectivity. Neuropharmacology. 2005;48(3):354–9. https://doi.org/10.1016/j.neuropharm.2004.11.004.

    Article  PubMed  CAS  Google Scholar 

  59. Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21(1):165–204. https://doi.org/10.1146/annurev.pa.21.040181.001121.

    Article  PubMed  CAS  Google Scholar 

  60. Costa BM, Feng B, Tsintsadze TS, Morley RM, Irvine MW, Tsintsadze V, et al. N-methyl-D-aspartate (NMDA) receptor NR2 subunit selectivity of a series of novel piperazine-2,3-dicarboxylate derivatives: preferential blockade of extrasynaptic NMDA receptors in the rat hippocampal CA3-CA1 synapse. J Pharmacol Exp Ther. 2009;331(2):618–26. https://doi.org/10.1124/jpet.109.156752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lodge D, Johnson KM. Noncompetitive excitatory amino acid receptor antagonists. Trends Pharmacol Sci. 1990;11(2):81–6. https://doi.org/10.1016/0165-6147(90)90323-z.

    Article  PubMed  CAS  Google Scholar 

  62. Anis N, Sherby S, Goodnow R Jr, Niwa M, Konno K, Kallimopoulos T, et al. Structure-activity relationships of philanthotoxin analogs and polyamines on N-methyl-D-aspartate and nicotinic acetylcholine receptors. J Pharmacol Exp Ther. 1990;254(3):764–73.

    PubMed  CAS  Google Scholar 

  63. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A. 1986;83(18):7104–8. https://doi.org/10.1073/pnas.83.18.7104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008;7(8):742–55. https://doi.org/10.1016/S1474-4422(08)70165-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Legendre P, Westbrook GL. Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism. Mol Pharmacol. 1991;40(2):289–98.

    PubMed  CAS  Google Scholar 

  66. Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 2011;475(7355):249–53. https://doi.org/10.1038/nature10180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bettini E, Sava A, Griffante C, Carignani C, Buson A, Capelli AM, et al. Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J Pharmacol Exp Ther. 2010;335(3):636–44. https://doi.org/10.1124/jpet.110.172544.

    Article  PubMed  CAS  Google Scholar 

  68. Edman S, McKay S, Macdonald LJ, Samadi M, Livesey MR, Hardingham GE, et al. TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Neuropharmacology. 2012;63(3):441–9. https://doi.org/10.1016/j.neuropharm.2012.04.027.

    Article  PubMed  CAS  Google Scholar 

  69. Mosley CA, Acker TM, Hansen KB, Mullasseril P, Andersen KT, Le P, et al. Quinazolin-4-one derivatives: a novel class of noncompetitive NR2C/D subunit-selective N-methyl-D-aspartate receptor antagonists. J Med Chem. 2010;53(15):5476–90. https://doi.org/10.1021/jm100027p.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Hansen KB, Traynelis SF. Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors. J Neurosci. 2011;31(10):3650–61. https://doi.org/10.1523/JNEUROSCI.5565-10.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Acker TM, Yuan H, Hansen KB, Vance KM, Ogden KK, Jensen HS, et al. Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators. Mol Pharmacol. 2011;80(5):782–95. https://doi.org/10.1124/mol.111.073239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Irvine MW, Costa BM, Volianskis A, Fang G, Ceolin L, Collingridge GL, et al. Coumarin-3-carboxylic acid derivatives as potentiators and inhibitors of recombinant and native N-methyl-D-aspartate receptors. Neurochem Int. 2012;61(4):593–600. https://doi.org/10.1016/j.neuint.2011.12.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Costa BM, Irvine MW, Fang G, Eaves RJ, Mayo-Martin MB, Skifter DA, et al. A novel family of negative and positive allosteric modulators of NMDA receptors. J Pharmacol Exp Ther. 2010;335(3):614–21. https://doi.org/10.1124/jpet.110.174144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Costa BM, Irvine MW, Fang G, Eaves RJ, Mayo-Martin MB, Laube B, et al. Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Neuropharmacology. 2012;62(4):1730–6. https://doi.org/10.1016/j.neuropharm.2011.11.019.

    Article  PubMed  CAS  Google Scholar 

  75. Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci. 1998;18(16):6163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen N, Moshaver A, Raymond LA. Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. Mol Pharmacol. 1997;51(6):1015–23. https://doi.org/10.1124/mol.51.6.1015.

    Article  PubMed  CAS  Google Scholar 

  77. Paoletti P, Ascher P, Neyton J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci. 1997;17(15):5711–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Petrovic M, Sedlacek M, Horak M, Chodounska H, Vyklicky L Jr. 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J Neurosci. 2005;25(37):8439–50. https://doi.org/10.1523/JNEUROSCI.1407-05.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Borovska J, Vyklicky V, Stastna E, Kapras V, Slavikova B, Horak M, et al. Access of inhibitory neurosteroids to the NMDA receptor. Br J Pharmacol. 2012;166(3):1069–83. https://doi.org/10.1111/j.1476-5381.2011.01816.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Park-Chung M, Wu FS, Purdy RH, Malayev AA, Gibbs TT, Farb DH. Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol Pharmacol. 1997;52(6):1113–23. https://doi.org/10.1124/mol.52.6.1113.

    Article  PubMed  CAS  Google Scholar 

  81. Allen TC, Kurdowska A. Interleukin 8 and acute lung injury. Arch Pathol Lab Med. 2014;138(2):266–9. https://doi.org/10.5858/arpa.2013-0182-RA.

    Article  PubMed  CAS  Google Scholar 

  82. Yang HH, Hou CC, Lin MT, Chang CP. Attenuating heat-induced acute lung inflammation and injury by dextromethorphan in rats. Am J Respir Cell Mol Biol. 2012;46(3):407–13. https://doi.org/10.1165/rcmb.2011-0226OC.

    Article  PubMed  CAS  Google Scholar 

  83. Zhe Z, Hongyuan B, Wenjuan Q, Peng W, Xiaowei L, Yan G. Blockade of glutamate receptor ameliorates lipopolysaccharide-induced sepsis through regulation of neuropeptides. Biosci Rep. 2018;38(3). https://doi.org/10.1042/BSR20171629.

  84. Wang M, Luo Z, Liu S, Li L, Deng X, Huang F, et al. Glutamate mediates hyperoxia-induced newborn rat lung injury through N-methyl-D-aspartate receptors. Am J Respir Cell Mol Biol. 2009;40(3):260–7. https://doi.org/10.1165/rcmb.2008-0135OC.

    Article  PubMed  CAS  Google Scholar 

  85. Li Y, Liu Y, Peng X, Liu W, Zhao F, Feng D, et al. NMDA receptor antagonist attenuates bleomycin-induced acute lung injury. PLoS One. 2015;10(5):e0125873. https://doi.org/10.1371/journal.pone.0125873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. da Cunha AA, Pauli V, Saciura VC, Pires MG, Constantino LC, de Souza B, et al. N-methyl-D-aspartate glutamate receptor blockade attenuates lung injury associated with experimental sepsis. Chest. 2010;137(2):297–302. https://doi.org/10.1378/chest.09-1570.

    Article  PubMed  CAS  Google Scholar 

  87. Hamidi SA, Dickman KG, Berisha H, Said SI. 17beta-estradiol protects the lung against acute injury: possible mediation by vasoactive intestinal polypeptide. Endocrinology. 2011;152(12):4729–37. https://doi.org/10.1210/en.2011-1631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Said SI, Berisha HI, Pakbaz H. Excitotoxicity in the lung: N-methyl-D-aspartate-induced, nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly (ADP-ribose) polymerase. Proc Natl Acad Sci U S A. 1996;93(10):4688–92. https://doi.org/10.1073/pnas.93.10.4688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tang F, Yue S, Luo Z, Feng D, Wang M, Qian C, et al. Role of N-methyl-D-aspartate receptor in hyperoxia-induced lung injury. Pediatr Pulmonol. 2005;40(5):437–44. https://doi.org/10.1002/ppul.20299.

    Article  PubMed  Google Scholar 

  90. Li JT, Wang WQ, Wang L, Liu NN, Zhao YL, Zhu XS, et al. Subanesthetic isoflurane relieves zymosan-induced neutrophil inflammatory response by targeting NMDA glutamate receptor and Toll-like receptor 2 signaling. Oncotarget. 2016;7(22):31772–89. https://doi.org/10.18632/oncotarget.9091.

    Article  PubMed  PubMed Central  Google Scholar 

  91. da Cunha AA, Nunes FB, Lunardelli A, Pauli V, Amaral RH, de Oliveira LM, et al. Treatment with N-methyl-D-aspartate receptor antagonist (MK-801) protects against oxidative stress in lipopolysaccharide-induced acute lung injury in the rat. Int Immunopharmacol. 2011;11(6):706–11. https://doi.org/10.1016/j.intimp.2011.01.016.

    Article  PubMed  CAS  Google Scholar 

  92. Hamasato EK, Ligeiro de Oliveira AP, Lino-dos-Santos-Franco A, Ribeiro A, Ferraz de Paula V, Peron JP, et al. Effects of MK-801 and amphetamine treatments on allergic lung inflammatory response in mice. Int Immunopharmacol. 2013;16(4):436–43. https://doi.org/10.1016/j.intimp.2013.04.019.

    Article  PubMed  CAS  Google Scholar 

  93. Ben-Abraham R, Guttman M, Flaishon R, Marouani N, Niv D, Weinbroum AA. Mesenteric artery clamping/unclamping-induced acute lung injury is attenuated by N-methyl-D-aspartate antagonist dextromethorphan. Lung. 2006;184(6):309–17. https://doi.org/10.1007/s00408-006-0029-9.

    Article  PubMed  CAS  Google Scholar 

  94. Cheng Q, Fang L, Feng D, Tang S, Yue S, Huang Y, et al. Memantine ameliorates pulmonary inflammation in a mice model of COPD induced by cigarette smoke combined with LPS. Biomed Pharmacother. 2019;109:2005–13. https://doi.org/10.1016/j.biopha.2018.11.002.

    Article  PubMed  CAS  Google Scholar 

  95. Wang Y, Yue S, Luo Z, Cao C, Yu X, Liao Z, et al. N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats. Respir Res. 2016;17(1):136. https://doi.org/10.1186/s12931-016-0453-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wyllie DJ, Behe P, Colquhoun D. Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J Physiol. 1998;510(Pt 1 1):1–18. https://doi.org/10.1111/j.1469-7793.1998.001bz.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. McGee MA, Abdel-Rahman AA. Enhanced vascular neuronal nitric-oxide synthase-derived nitric-oxide production underlies the pressor response caused by peripheral N-methyl-D-aspartate receptor activation in conscious rats. J Pharmacol Exp Ther. 2012;342(2):461–71. https://doi.org/10.1124/jpet.112.194464.

    Article  PubMed  CAS  Google Scholar 

  98. Taguchi K, Tamba M, Bannai S, Sato H. Induction of cystine/glutamate transporter in bacterial lipopolysaccharide induced endotoxemia in mice. J Inflamm (Lond). 2007;4(1):20. https://doi.org/10.1186/1476-9255-4-20.

    Article  CAS  Google Scholar 

  99. Said SI, Pakbaz H, Berisha HI, Raza S. NMDA receptor activation: critical role in oxidant tissue injury. Free Radic Biol Med. 2000;28(8):1300–2. https://doi.org/10.1016/s0891-5849(00)00289-6.

    Article  PubMed  CAS  Google Scholar 

  100. Ma L, Liu W, Feng D, Han J, Li Y, Cheng Q, et al. Protective effect of NMDA receptor antagonist memantine on acute lung injury in mice. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39(1):12–6. https://doi.org/10.11817/j.issn.1672-7347.2014.01.003.

    Article  PubMed  CAS  Google Scholar 

  101. Shen L, Han JZ, Li C, Yue SJ, Liu Y, Qin XQ, et al. Protective effect of ginsenoside Rg1 on glutamate-induced lung injury. Acta Pharmacol Sin. 2007;28(3):392–7. https://doi.org/10.1111/j.1745-7254.2007.00511.x.

    Article  PubMed  CAS  Google Scholar 

  102. Jiang J, Jian Q, Jing M, Zhang Z, Zhang G, Shan L, et al. The novel N-methyl-d-aspartate receptor antagonist MN-08 ameliorates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol. 2019;66:109–18. https://doi.org/10.1016/j.intimp.2018.11.010.

    Article  PubMed  CAS  Google Scholar 

  103. Shi S, Liu T, Wang D, Zhang Y, Liang J, Yang B, et al. Activation of N-methyl-d-aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats. Europace. 2017;19(7):1237–43. https://doi.org/10.1093/europace/euw086.

    Article  PubMed  Google Scholar 

  104. Shi S, Liu T, Li Y, Qin M, Tang Y, Shen JY, et al. Chronic N-methyl-D-aspartate receptor activation induces cardiac electrical remodeling and increases susceptibility to ventricular arrhythmias. Pacing Clin Electrophysiol. 2014;37(10):1367–77. https://doi.org/10.1111/pace.12430.

    Article  PubMed  Google Scholar 

  105. McGee MA, Abdel-Rahman AA. Ethanol attenuates peripheral NMDAR-mediated vascular oxidative stress and pressor response. Alcohol. 2015;49(5):499–506. https://doi.org/10.1016/j.alcohol.2015.03.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lu J, Gao X, Gu J, Zhou L, Guo S, Hao W, et al. Nerve sprouting contributes to increased severity of ventricular tachyarrhythmias by upregulating iGluRs in rats with healed myocardial necrotic injury. J Mol Neurosci. 2012;48(2):448–55. https://doi.org/10.1007/s12031-012-9720-x.

    Article  PubMed  CAS  Google Scholar 

  107. Liu Y, Zhou L, Xu HF, Yan L, Ding F, Hao W, et al. A preliminary experimental study on the cardiac toxicity of glutamate and the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats. Chin Med J. 2013;126(7):1323–32.

    PubMed  CAS  Google Scholar 

  108. D'Amico M, Di Filippo C, Rossi F, Rossi F. Arrhythmias induced by myocardial ischaemia-reperfusion are sensitive to ionotropic excitatory amino acid receptor antagonists. Eur J Pharmacol. 1999;366(2–3):167–74. https://doi.org/10.1016/s0014-2999(98)00914-5.

    Article  PubMed  CAS  Google Scholar 

  109. Sun X, Zhong J, Wang D, Xu J, Su H, An C, et al. Increasing glutamate promotes ischemia-reperfusion-induced ventricular arrhythmias in rats in vivo. Pharmacology. 2014;93(1–2):4–9. https://doi.org/10.1159/000356311.

    Article  PubMed  CAS  Google Scholar 

  110. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999;79(3):917–1017. https://doi.org/10.1152/physrev.1999.79.3.917.

    Article  PubMed  CAS  Google Scholar 

  111. Bennett AJ, DePetrillo PB. Differential effects of MK801 and lorazepam on heart rate variability in adolescent rhesus monkeys (macaca mulatta). J Cardiovasc Pharmacol. 2005;45(5):383–8. https://doi.org/10.1097/01.fjc.0000156820.12339.db.

    Article  PubMed  CAS  Google Scholar 

  112. Rosenberger D, Moshal KS, Kartha GK, Tyagi N, Sen U, Lominadze D, et al. Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia. Arch Physiol Biochem. 2006;112(4–5):219–27. https://doi.org/10.1080/13813450601093443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jalife J, Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 2015;25(6):475–84. https://doi.org/10.1016/j.tcm.2014.12.015.

    Article  PubMed  CAS  Google Scholar 

  114. Gemel J, Levy AE, Simon AR, Bennett KB, Ai X, Akhter S, et al. Connexin40 abnormalities and atrial fibrillation in the human heart. J Mol Cell Cardiol. 2014;76:159–68. https://doi.org/10.1016/j.yjmcc.2014.08.021.

    Article  PubMed  CAS  Google Scholar 

  115. Meneghini A, Ferreira C, Abreu LC, Ferreira M, Ferreira Filho C, Valenti VE, et al. Cold stress effects on cardiomyocytes nuclear size in rats: light microscopic evaluation. Rev Bras Cir Cardiovasc. 2008;23(4):530–3. https://doi.org/10.1590/s0102-76382008000400013.

    Article  PubMed  Google Scholar 

  116. Meneghini A, Ferreira C, Abreu LC, Valenti VE, Ferreira M, Filho CF, et al. Memantine prevents cardiomyocytes nuclear size reduction in the left ventricle of rats exposed to cold stress. Clinics (Sao Paulo). 2009;64(9):921–6. https://doi.org/10.1590/S1807-59322009000900014.

    Article  Google Scholar 

  117. Abbaszadeh S, Javidmehr A, Askari B, Janssen PML, Soraya H. Memantine, an NMDA receptor antagonist, attenuates cardiac remodeling, lipid peroxidation and neutrophil recruitment in heart failure: a cardioprotective agent? Biomed Pharmacother. 2018;108:1237–43. https://doi.org/10.1016/j.biopha.2018.09.153.

    Article  PubMed  CAS  Google Scholar 

  118. Matsuoka N, Kodama H, Arakawa H, Yamaguchi I. N-methyl-D-aspartate receptor blockade by dizocilpine prevents stress-induced sudden death in cardiomyopathic hamsters. Brain Res. 2002;944(1–2):200–4. https://doi.org/10.1016/s0006-8993(02)02885-8.

    Article  PubMed  CAS  Google Scholar 

  119. Tejero-Taldo MI, Chmielinska JJ, Gonzalez G, Mak IT, Weglicki WB. N-methyl-D-aspartate receptor blockade inhibits cardiac inflammation in the Mg2+−deficient rat. J Pharmacol Exp Ther. 2004;311(1):8–13. https://doi.org/10.1124/jpet.104.070003.

    Article  PubMed  CAS  Google Scholar 

  120. Liu ZY, Hu S, Zhong QW, Tian CN, Ma HM, Yu JJ. N-methyl-D-aspartate receptor-driven calcium influx potentiates the adverse effects of myocardial ischemia-reperfusion injury ex vivo. J Cardiovasc Pharmacol. 2017;70(5):329–38. https://doi.org/10.1097/FJC.0000000000000527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Repas SJ, Saad NS, Janssen PML, Elnakish MT. Memantine, an NMDA receptor antagonist, prevents thyroxin-induced hypertension, but not cardiac remodeling. J Cardiovasc Pharmacol. 2017;70(5):305–13. https://doi.org/10.1097/FJC.0000000000000521.

    Article  PubMed  CAS  Google Scholar 

  122. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, et al. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol. 2008;295(2):H890–7. https://doi.org/10.1152/ajpheart.00099.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Moshal KS, Kumar M, Tyagi N, Mishra PK, Metreveli N, Rodriguez WE, et al. Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. Am J Physiol Heart Circ Physiol. 2009;296(3):H887–92. https://doi.org/10.1152/ajpheart.00750.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Tyagi N, Vacek JC, Givvimani S, Sen U, Tyagi SC. Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. J Recept Signal Transduct Res. 2010;30(2):78–87. https://doi.org/10.3109/10799891003614808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Gao X, Xu X, Pang J, Zhang C, Ding JM, Peng X, et al. NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiol Res. 2007;56(5):559–69.

    PubMed  CAS  Google Scholar 

  126. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101(6):660–7. https://doi.org/10.1161/01.cir.101.6.660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, et al. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res. 2000;86(6):692–9. https://doi.org/10.1161/01.res.86.6.692.

    Article  PubMed  CAS  Google Scholar 

  128. Miao W, Luo Z, Kitsis RN, Walsh K. Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol. 2000;32(12):2397–402. https://doi.org/10.1006/jmcc.2000.1283.

    Article  PubMed  CAS  Google Scholar 

  129. Kawamura S, Yoshida K, Miura T, Mizukami Y, Matsuzaki M. Ischemic preconditioning translocates PKC-delta and -epsilon, which mediate functional protection in isolated rat heart. Am J Phys. 1998;275(6):H2266–71. https://doi.org/10.1152/ajpheart.1998.275.6.H2266.

    Article  CAS  Google Scholar 

  130. Meng L, Zhang Z, Xu K, Qi G. HIV-1 gp120 induces autophagy in cardiomyocytes via the NMDA receptor. Int J Cardiol. 2013;167(6):2517–23. https://doi.org/10.1016/j.ijcard.2012.06.067.

    Article  PubMed  Google Scholar 

  131. Ma H, Chen SR, Chen H, Zhou JJ, Li DP, Pan HL. alpha2delta-1 couples to NMDA receptors in the hypothalamus to sustain sympathetic vasomotor activity in hypertension. J Physiol. 2018;596(17):4269–83. https://doi.org/10.1113/JP276394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lo WC, Lin HC, Ger LP, Tung CS, Tseng CJ. Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats. Hypertension. 1997;30(6):1499–503. https://doi.org/10.1161/01.hyp.30.6.1499.

    Article  PubMed  CAS  Google Scholar 

  133. Sitniewska EM, Wisniewska RJ, Wisniewski K. The role of ionotropic receptors of glutaminic acid in cardiovascular system. A. the influence of ionotropic receptor NMDA agonist - 1R,3R-ACPD and antagonist - DL-AP7 on the systemic pressure in rats. Amino Acids. 2003;24(4):397–403. https://doi.org/10.1007/s00726-002-0342-4.

    Article  PubMed  CAS  Google Scholar 

  134. Huang CF, Su MJ. Positive inotropic action of NMDA receptor antagonist (+)-MK801 in rat heart. J Biomed Sci. 1999;6(6):387–98. https://doi.org/10.1007/bf02253670.

    Article  PubMed  CAS  Google Scholar 

  135. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66. https://doi.org/10.1016/S0140-6736(11)61454-2.

    Article  PubMed  Google Scholar 

  136. Ostermann M, Liu K. Pathophysiology of AKI. Best Pract Res Clin Anaesthesiol. 2017;31(3):305–14. https://doi.org/10.1016/j.bpa.2017.09.001.

    Article  PubMed  Google Scholar 

  137. Leung JC, Marphis T, Craver RD, Silverstein DM. Altered NMDA receptor expression in renal toxicity: protection with a receptor antagonist. Kidney Int. 2004;66(1):167–76. https://doi.org/10.1111/j.1523-1755.2004.00718.x.

    Article  PubMed  CAS  Google Scholar 

  138. Mahieu S, Klug M, Millen N, Fabro A, Benmelej A, Contini MC. Monosodium glutamate intake affect the function of the kidney through NMDA receptor. Life Sci. 2016;149:114–9. https://doi.org/10.1016/j.lfs.2016.02.023.

    Article  PubMed  CAS  Google Scholar 

  139. Sharma A. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review. J Biomed Sci. 2015;22(1):93. https://doi.org/10.1186/s12929-015-0192-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Pundir M, Arora S, Kaur T, Singh R, Singh AP. Effect of modulating the allosteric sites of N-methyl-D-aspartate receptors in ischemia-reperfusion induced acute kidney injury. J Surg Res. 2013;183(2):668–77. https://doi.org/10.1016/j.jss.2013.01.040.

    Article  PubMed  CAS  Google Scholar 

  141. Lin CS, Hung SF, Huang HS, Ma MC. Blockade of the N-methyl-D-aspartate glutamate receptor ameliorates lipopolysaccharide-induced renal insufficiency. PLoS One. 2015;10(7):e0132204. https://doi.org/10.1371/journal.pone.0132204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Arora S, Kaur T, Kaur A, Singh AP. Glycine aggravates ischemia reperfusion-induced acute kidney injury through N-methyl-D-aspartate receptor activation in rats. Mol Cell Biochem. 2014;393(1–2):123–31. https://doi.org/10.1007/s11010-014-2052-0.

    Article  PubMed  CAS  Google Scholar 

  143. Szaroma W, Dziubek K, Kapusta E. Effect of N-methyl-D-aspartic acid on activity of superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione level in selected organs of the mouse. Acta Physiol Hung. 2014;101(3):377–87. https://doi.org/10.1556/APhysiol.101.2014.003.

    Article  PubMed  CAS  Google Scholar 

  144. Albvr VR, Tan SH, Candasamy M, Bhattamisra SK. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab Syndr. 2019;13(1):754–62. https://doi.org/10.1016/j.dsx.2018.11.054.

    Article  Google Scholar 

  145. Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol. 2012;23(12):1917–28. https://doi.org/10.1681/ASN.2012040390.

    Article  PubMed  CAS  Google Scholar 

  146. Shen J, Wang R, He Z, Huang H, He X, Zhou J, et al. NMDA receptors participate in the progression of diabetic kidney disease by decreasing Cdc42-GTP activation in podocytes. J Pathol. 2016;240(2):149–60. https://doi.org/10.1002/path.4764.

    Article  PubMed  CAS  Google Scholar 

  147. Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol. 2008;591(1–3):266–72. https://doi.org/10.1016/j.ejphar.2008.06.077.

    Article  PubMed  CAS  Google Scholar 

  148. Kundu S, Pushpakumar S, Sen U. MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide. 2015;46:172–85. https://doi.org/10.1016/j.niox.2015.02.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Melendez J, Liu M, Sampson L, Akunuru S, Han X, Vallance J, et al. Cdc42 coordinates proliferation, polarity, migration, and differentiation of small intestinal epithelial cells in mice. Gastroenterology. 2013;145(4):808–19. https://doi.org/10.1053/j.gastro.2013.06.021.

    Article  PubMed  CAS  Google Scholar 

  150. Kundu S, Pushpakumar SB, Tyagi A, Coley D, Sen U. Hydrogen sulfide deficiency and diabetic renal remodeling: role of matrix metalloproteinase-9. Am J Physiol Endocrinol Metab. 2013;304(12):E1365–78. https://doi.org/10.1152/ajpendo.00604.2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Leung JC, Ragland N, Marphis T, Silverstein DM. NMDA agonists and antagonists induce renal culture cell toxicity. Med Chem. 2008;4(6):565–71. https://doi.org/10.2174/157340608786242034.

    Article  PubMed  CAS  Google Scholar 

  152. Kaur A, Kaur T, Singh B, Pathak D, Singh Buttar H, Pal SA. Curcumin alleviates ischemia reperfusion-induced acute kidney injury through NMDA receptor antagonism in rats. Ren Fail. 2016;38(9):1462–7. https://doi.org/10.1080/0886022X.2016.1214892.

    Article  PubMed  CAS  Google Scholar 

  153. Singh AP, Singh N, Bedi PMS. Estradiol mitigates ischemia reperfusion-induced acute renal failure through NMDA receptor antagonism in rats. Mol Cell Biochem. 2017;434(1–2):33–40. https://doi.org/10.1007/s11010-017-3034-9.

    Article  PubMed  CAS  Google Scholar 

  154. Singh AP, Singh N, Bedi PM. Pioglitazone ameliorates renal ischemia reperfusion injury through NMDA receptor antagonism in rats. Mol Cell Biochem. 2016;417(1–2):111–8. https://doi.org/10.1007/s11010-016-2718-x.

    Article  PubMed  CAS  Google Scholar 

  155. Huang XT, Li C, Peng XP, Guo J, Yue SJ, Liu W, et al. An excessive increase in glutamate contributes to glucose-toxicity in beta-cells via activation of pancreatic NMDA receptors in rodent diabetes. Sci Rep. 2017;7:44120. https://doi.org/10.1038/srep44120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Patterson S, Irwin N, Guo-Parke H, Moffett RC, Scullion SM, Flatt PR, et al. Evaluation of the role of N-methyl-D-aspartate (NMDA) receptors in insulin secreting beta-cells. Eur J Pharmacol. 2016;771:107–13. https://doi.org/10.1016/j.ejphar.2015.12.015.

    Article  PubMed  CAS  Google Scholar 

  157. Huang XT, Yue SJ, Li C, Huang YH, Cheng QM, Li XH, et al. A sustained activation of pancreatic NMDARs is a novel factor of beta-cell apoptosis and dysfunction. Endocrinology. 2017;158(11):3900–13. https://doi.org/10.1210/en.2017-00366.

    Article  PubMed  CAS  Google Scholar 

  158. Wollheim CB, Maechler P. Beta cell glutamate receptor antagonists: novel oral antidiabetic drugs? Nat Med. 2015;21(4):310–1. https://doi.org/10.1038/nm.3835.

    Article  PubMed  CAS  Google Scholar 

  159. Huang XT, Liu W, Zhou Y, Sun M, Sun CC, Zhang CY, et al. Endoplasmic reticulum stress contributes to NMDA-induced pancreatic beta-cell dysfunction in a CHOP-dependent manner. Life Sci. 2019;232:116612. https://doi.org/10.1016/j.lfs.2019.116612.

    Article  PubMed  CAS  Google Scholar 

  160. Otter S, Lammert E. Exciting times for pancreatic islets: glutamate signaling in endocrine cells. Trends Endocrinol Metab. 2016;27(3):177–88. https://doi.org/10.1016/j.tem.2015.12.004.

    Article  PubMed  CAS  Google Scholar 

  161. Boonnate P, Waraasawapati S, Hipkaeo W, Pethlert S, Sharma A, Selmi C, et al. Monosodium glutamate dietary consumption decreases pancreatic beta-cell mass in adult Wistar rats. PLoS One. 2015;10(6):e0131595. https://doi.org/10.1371/journal.pone.0131595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, et al. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium. 2010;47(3):264–72. https://doi.org/10.1016/j.ceca.2009.12.010.

    Article  PubMed  CAS  Google Scholar 

  163. Lechin F, van der Dijs B, Pardey-Maldonado B, Rivera JE, Lechin ME, Baez S. Amantadine reduces glucagon and enhances insulin secretion throughout the oral glucose tolerance test: central plus peripheral nervous system mechanisms. Diabetes Metab Syndr Obes. 2009;2:203–13. https://doi.org/10.2147/dmsott.s7606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Marquard J, Stirban A, Schliess F, Sievers F, Welters A, Otter S, et al. Effects of dextromethorphan as add-on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded, multiple crossover, single-dose clinical trial. Diabetes Obes Metab. 2016;18(1):100–3. https://doi.org/10.1111/dom.12576.

    Article  PubMed  CAS  Google Scholar 

  165. Seino S, Sugawara K, Yokoi N, Takahashi H. beta-Cell signalling and insulin secretagogues: a path for improved diabetes therapy. Diabetes Obes Metab. 2017;19(Suppl 1):22–9. https://doi.org/10.1111/dom.12995.

    Article  PubMed  CAS  Google Scholar 

  166. Arjona Ferreira JC, Corry D, Mogensen CE, Sloan L, Xu L, Golm GT, et al. Efficacy and safety of sitagliptin in patients with type 2 diabetes and ESRD receiving dialysis: a 54-week randomized trial. Am J Kidney Dis. 2013;61(4):579–87. https://doi.org/10.1053/j.ajkd.2012.11.043.

    Article  CAS  PubMed  Google Scholar 

  167. Huang XT, Yue SJ, Li C, Guo J, Huang YH, Han JZ, et al. Antenatal blockade of N-methyl-D-aspartate receptors by Memantine reduces the susceptibility to diabetes induced by a high-fat diet in rats with intrauterine growth restriction. Biol Reprod. 2017;96(5):960–70. https://doi.org/10.1095/biolreprod.116.145011.

    Article  PubMed  Google Scholar 

  168. Yabar CS, Winter JM. Pancreatic Cancer: a review. Gastroenterol Clin N Am. 2016;45(3):429–45. https://doi.org/10.1016/j.gtc.2016.04.003.

    Article  Google Scholar 

  169. Malsy M, Gebhardt K, Gruber M, Wiese C, Graf B, Bundscherer A. Effects of ketamine, s-ketamine, and MK 801 on proliferation, apoptosis, and necrosis in pancreatic cancer cells. BMC Anesthesiol. 2015;15:111. https://doi.org/10.1186/s12871-015-0076-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. North WG, Liu F, Lin LZ, Tian R, Akerman B. NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment. Clin Pharmacol. 2017;9:79–86. https://doi.org/10.2147/CPAA.S140057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem. 2012;287(38):31666–73. https://doi.org/10.1074/jbc.R112.343061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Chen X, Wu Q, You L, Chen S, Zhu M, Miao C. Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor. Eur J Pharmacol. 2017;795:150–9. https://doi.org/10.1016/j.ejphar.2016.12.017.

    Article  PubMed  CAS  Google Scholar 

  173. Parbhu SK, Adler DG. Pancreatic neuroendocrine tumors: contemporary diagnosis and management. Hosp Pract (1995). 2016;44(3):109–19. https://doi.org/10.1080/21548331.2016.1210474.

    Article  Google Scholar 

  174. Li L, Hanahan D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 2013;153(1):86–100. https://doi.org/10.1016/j.cell.2013.02.051.

    Article  PubMed  CAS  Google Scholar 

  175. Hanahan D. Herifogure formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315(6015):115–22. https://doi.org/10.1038/315115a0.

    Article  PubMed  CAS  Google Scholar 

  176. Robinson HPC, Li L. Autocrine, paracrine and necrotic NMDA receptor signalling in mouse pancreatic neuroendocrine tumour cells. Open Biol. 2017;7(12). https://doi.org/10.1098/rsob.170221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li L, Zeng Q, Bhutkar A, Galvan JA, Karamitopoulou E, Noordermeer D, et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell. 2018;33(4):736–51 e5. https://doi.org/10.1016/j.ccell.2018.02.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Francis ME, Eggers PW, Hostetter TH, Briggs JP. Association between serum homocysteine and markers of impaired kidney function in adults in the United States. Kidney Int. 2004;66(1):303–12. https://doi.org/10.1111/j.1523-1755.2004.00732.x.

    Article  PubMed  CAS  Google Scholar 

  179. Dalton ML, Gadson PF Jr, Wrenn RW, Rosenquist TH. Homocysteine signal cascade: production of phospholipids, activation of protein kinase C, and the induction of c-fos and c-myb in smooth muscle cells. FASEB J. 1997;11(8):703–11. https://doi.org/10.1096/fasebj.11.8.9240971.

    Article  PubMed  CAS  Google Scholar 

  180. Chen H, Fitzgerald R, Brown AT, Qureshi I, Breckenridge J, Kazi R, et al. Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J Vasc Surg. 2005;41(5):853–60. https://doi.org/10.1016/j.jvs.2005.02.021.

    Article  PubMed  Google Scholar 

  181. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77. https://doi.org/10.1038/nrn3257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Wejksza K, Rzeski W, Parada-Turska J, Zdzisinska B, Rejdak R, Kocki T, et al. Kynurenic acid production in cultured bovine aortic endothelial cells. Homocysteine is a potent inhibitor. Naunyn Schmiedeberg's Arch Pharmacol. 2004;369(3):300–4. https://doi.org/10.1007/s00210-004-0872-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Cheng Haipeng, Lan Jinrong, Fang Lijuan, Cao Yuanyuan, Li Yanghang, Luo Yongyu, Bao Xingwen, Hua Qingzhong, Liang Xinyue, and Qiu Yujia for their perpetual support and encouragement.

Funding

This study was funded by the National Natural Science Foundation of China (Grants 81170717, 81570065, 81870059).

Author information

Authors and Affiliations

Authors

Contributions

Feng Dandan and Ma Tianqi developed the conception of the work, Ma Tianqi drafted the manuscript, Cheng Qingmei contributed to the organization of tables and figures, Luo Ziqiang, Feng Dandan, and Chen Chen ensured that questions related to the accuracy or integrity of the work are appropriately investigated and resolved, and the authors were responsible for the final version of the manuscript.

Corresponding author

Correspondence to Dandan Feng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Ethic5al approval was not required for this review.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Cheng, Q., Chen, C. et al. Excessive Activation of NMDA Receptors in the Pathogenesis of Multiple Peripheral Organs via Mitochondrial Dysfunction, Oxidative Stress, and Inflammation. SN Compr. Clin. Med. 2, 551–569 (2020). https://doi.org/10.1007/s42399-020-00298-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-020-00298-w

Keywords

Navigation