Skip to main content
Log in

Synthesis and Antioxidant Assessment of some Derived Compounds from 2-Amino-3-Cyanothiophene

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In the current research work, we report the synthesis of thiophenic derivatives 1–3 resulting in good yields (88–90%). This synthesis was undertaken in mild reaction conditions between readily available 2-amino-3-cyanothiophene, aldehydes and 2,5-dimethoxytetrahydrofuran. These compounds were brominated with NBS (N-bromosuccenimide) leading to new derivatives, namely 4–6 at room temperature for 24 h. In addition, we investigated the antioxidant activities using DPPH (2,2-diphenyl-1-picrylhydrazyl) and total ABTS (2,2’-azinobis-[3-ethylbenzthiazoline-6- sulfonic acid]) methods in order to evaluate the antioxidant activity of the new synthesized compounds. The results credibly indicate that compounds 1 and 3 showed the highest antioxidant activities. These new thiophenic compounds can be invested as substrates in the catalysis of C-H activation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DPPH:

2,2-diphenyl-1-picrylhydrazyl

ABTS:

2,2’-azinobis-[3-ethylbenzthiazoline-6- sulfonic acid

NBS:

N-bromosuccinimide

PBS:

Phosphate Buffer Saline

TLC:

Thin Layer Chromatography

NMR:

Nuclear Magnetic Resonance

TE:

Trolox Equivalent

IC50 :

inhibition concentration at 50%

References

  1. Romagnoli R, Baraldi PG, Cara CL, Salvador MK, Preti D, Tabrizi MA, Balzarini J, Nussbaumer P, Bassetto M, Brancale A, Fu XH, Gao Y, Li J, Zhang SZ, Hamel E, Bortolozzi R, Basso G, Viola G (2014) Bioorg Med Chem 22:5097–5109. https://doi.org/10.1016/j.bmc.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  2. Abdelhameid MK, Labib MB, Negmeldin AT, Al-Shorbagy M, Mohammed MR (2018) J Enzym Inhib Med Chem 33:1472–1493. https://doi.org/10.1080%2F14756366.2018.1503654

    Article  CAS  Google Scholar 

  3. Zhao G, Alami M, Provot O (2017) RSC Adv 7:46007–46013. https://doi.org/10.1039/c7ra07340b. )

    Article  CAS  Google Scholar 

  4. Bouzayani B, Ben Salem R, Soulé JF, Doucet H (2019) Eur J Org Chem 28:4581–4588. https://doi.org/10.1002/ejoc.201900775

    Article  CAS  Google Scholar 

  5. Xu D, Li Z, Peng YX, Geng J, Qian HF, Huang W (2016) J Dye Pig 133:143–152. https://doi.org/10.1016/j.dyepig.2016.05.050

    Article  CAS  Google Scholar 

  6. Li X, Li W, Ouyang M, Zhang Y, Wright DS, Zhang C (2017) J Mater Chem 5:12–28. https://doi.org/10.1039/C6TC04002K

    Article  CAS  Google Scholar 

  7. Popowycz F, Métay E, Lemaire M (2011) Compt Rend Chem 14:621–628. https://doi.org/10.1016/j.crci.2010.06.006. )

    Article  CAS  Google Scholar 

  8. Yagui J, Angel FA (2020) Opt Mat 109:110354–110359. https://doi.org/10.1016/j.optmat.2020.110354

    Article  CAS  Google Scholar 

  9. Zhang Y, Xu J, Hu L, Guo T, He R, Yang W, Cao Y (2020) Org Elec 2020 81: 105670–105681. https://doi.org/10.1016/j.orgel.2020.105670

  10. Guo BK, Yang F, Wang Y, Wei Q, Liu L, Zhong X, Wang L, Gong J, Li F, Wong W, Alamry KA, Zhao Y (2020) J Lumin 220:116963–117009. https://doi.org/10.1016/j.jlumin.2019.116963

    Article  CAS  Google Scholar 

  11. Lugovik KI, Kanaa A, Benassi E, Belskaya NP (2021) As J Org Chem 10:400–411. https://doi.org/10.1002/ajoc.202000663

    Article  CAS  Google Scholar 

  12. Archna PS, Chawla PA (2020) Bioorg Chem 101:104026. https://doi.org/10.1016/j.bioorg.2020.104026. )

    Article  CAS  PubMed  Google Scholar 

  13. Pathania S, Narang RR, Rawal RK (2019) Eur J Med Chem 180:486–508. https://doi.org/10.1016/j.ejmech.2019.07.043

    Article  CAS  PubMed  Google Scholar 

  14. Harit T, Bellaouchi R, Asehraou A, Rahal M, Bouabdallah I, Malek F (2017) J Mol Struct 1133:74–79. https://doi.org/10.1016/j.molstruc.2016.11.051. )

    Article  CAS  Google Scholar 

  15. Yahia NM, Nahed AK, Seham A, Salem S, AlS, Thoraya AF, Mohammad SM (2017) Chem Cent J 11:75–85. https://doi.org/10.1186/s13065-017-0307-z

    Article  CAS  Google Scholar 

  16. Nisheeth CD, Yogesh MR, Ashvinkumar GK, Keyur NS, Unnat PP, Vijay MN (2022) J Het Chemistry 59:75–87. https://doi.org/10.1002/ardp.200800026

    Article  CAS  Google Scholar 

  17. Mishra P, Middha A, Saxena V, Saxena A (2016) J Pharm Biosci 4:64–68. https://doi.org/10.20510/ukjpb/4/i3/108388

    Article  CAS  Google Scholar 

  18. Berrade L, Aisa B, Ramirez MJ, Galiano S, Guccione S, Moltzau LR, Levy FO, Nicoletti F, Battaglia G, Molinaro G, Aldana I, Monge A, Perez-Silanes S (2011) J Med Chem 54:3086–3090. https://doi.org/10.1021/jm2000773

    Article  CAS  PubMed  Google Scholar 

  19. Ashour HM, Shaabana OG, Rizk OH, El-Ashmawy IM (2013) Eur J Med Chem 62:341–351. https://doi.org/10.1016/j.ejmech.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  20. Kang D, Ding X, Wu G, Huo Z, Zhou Z, Zhao T, Feng D, Wang Z, Tian Y, Daelemans D (2017) ACS Med Chem Lett 8:1188–1193. https://doi.org/10.1021/acsmedchemlett.7b00361. )

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shin-ichi K, Yuhei G, Takuya Y, Yuki S, Hiroyuki S, Yohsuke K, Atsuhiko I, Takashi D, Motohiro S, Toshio M, Akiya O, Tadayuki T (2018) J Molecules 23:885–909. https://doi.org/10.3390/molecules23040885

    Article  CAS  Google Scholar 

  22. Maria A, Anaïs P-B, Nicolas PE B (2018) Med Chem Commun 5:759–782. https://doi.org/10.1039%2Fc7md00448f

    Google Scholar 

  23. Kang D, Fang Z, Huang B, Lu X, Zhang H, Xu H, Huo Z, Zhou Z, Yu Z, Meng Q, Wu G, Ding X, Tian Y, Daelemans D, Clercq ED, Pannecouque C, Zhan P, Liu X (2017) J Med Chem 60:4424–4443. https://doi.org/10.1021/acs.jmedchem.7b00332

    Article  CAS  PubMed  Google Scholar 

  24. Rashmi S, Prabhakar KV (2019) BMC Chem 13:54–66. https://doi.org/10.1186/s13065-019-0569-8

    Article  CAS  Google Scholar 

  25. Kotaiah Y, Harikrishana N, Nagaraju K, Rao V (2012) Eur J Med Chem 58:340–345. https://doi.org/10.1016/j.ejmech.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  26. Rayssa MDdaC, Renaud Z, Sarah B, Msc RMD, da José C, Jean-Luc PS-J, Marie-Paule D, Francisco M-L JBM-J (2020) Chem Med Chem 8:716–725. https://doi.org/10.1002/cmdc.201900688

    Article  CAS  Google Scholar 

  27. Mohamed EK (2020) Synth Com 17:2590–2616. https://doi.org/10.1080/00397911.2020.1777311

    Article  CAS  Google Scholar 

  28. Luna IS, Neves WW, de Lima-Neto RG, Albuquerque APB, Pitta MGR, Rêgo MJBM, Neves RP, Scotti MT, Mendonça-Junior FJB (2021) J Braz Chem 32:1017–1029. https://doi.org/10.21577/0103-5053.20210004

    Article  CAS  Google Scholar 

  29. Dufresnea S, Skene WG (2012) J Phys Org Chem 25:211–221. https://doi.org/10.1002/poc.1894

    Article  CAS  Google Scholar 

  30. Smari I, Youssef C, Ben Ammar H, Ben Hassine B, Soule JF, Doucet H (2015) Tetrahedron 71:6586–6593. https://doi.org/10.1016/j.tet.2015.03.022

    Article  CAS  Google Scholar 

  31. Khedher O, Rigane G, Ben Salem R, Moussaoui Y (2020) Chem Afri. https://doi.org/10.1007/s42250-020-00170-3

    Article  Google Scholar 

  32. Elakremi M, Sillero L, Ayed L, Mannai F, Ben Salem R, Labidi J, Moussaoui Y (2022) Cell Chem Technol 56:309–319. https://doi.org/10.35812/CelluloseChemTechnol.2022.56.27

    Article  CAS  Google Scholar 

  33. Gendron D, Vamvounis G (2015) J Org Synt 47:385–414. https://doi.org/10.1080/00304948.2015.1088752

    Article  CAS  Google Scholar 

  34. Tamilavan V, Cho N, Kim C, Ko J, Hyun MH (2012) Tetrahedron 68:5890–5897. https://doi.org/10.1016/j.tet.2012.04.104

    Article  CAS  Google Scholar 

  35. Qu Z, Jiang Z, Chen L, Xiao D, Tian C, Gao W, Wei Q, Gong J (2012) Appl Polym Sci 124:1186–1192. https://doi.org/10.1002/app.35078

    Article  CAS  Google Scholar 

  36. Pati PB, Zade SS (2014) J RSC Adv 4:17022–17027. https://doi.org/10.1039/c4ra01993h

    Article  CAS  Google Scholar 

  37. Mabkhot YN, Barakat A, Al-Majid AM, Alshahrani S, Yousuf S, Choudhary MI (2013) J Cent Chem 7:112–120. https://doi.org/10.1186/1752-153X-7-112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All Authors are extremely grateful to scientific Ministry of Higher Education Research of Tunisia for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghayth Rigane.

Ethics declarations

Conflict of Interest

There are no conflicts of Interest. Ridha Ben Salem and Ghayth Rigane are Associate Editors of Chemistry Africa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzayani, B., Elakermi, M., Mosbah, M.B. et al. Synthesis and Antioxidant Assessment of some Derived Compounds from 2-Amino-3-Cyanothiophene. Chemistry Africa 6, 1201–1207 (2023). https://doi.org/10.1007/s42250-022-00559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00559-2

Keywords

Navigation