Skip to main content
Log in

Manifestation of Cu-MOF-templated TiO2 nanocomposite for synergistic photoreduction of CO2 to methanol production

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) comprised of metal ions and organic linkers exhibit large internal surface areas and pore volumes in order to create a supramolecular network-like structure. Current work deals with the synthesis of two different MOFs containing copper or nickel metals with benzene tricarboxylic acid (BTC) organic linker [Cu-BTC-MOF (1), Ni-BTC-MOF (2)] and two TiO2 immobilized MOF materials [TiO2@Cu-BTC-MOF (3) and TiO2@Ni-BTC-MOF (4)]. Synthesized four catalysts have been characterized by various spectroscopic techniques (SEM, XPS, single-crystal, BET surface analysis, FT-IR, UV–Vis DRS, and XRD). The results supported that the formation of frameworks octahedral geometry with chemical formula Cu(BTC)3·H2O and the immobilization of TiO2 on synthesized MOFs (14) have been confirmed. These synthesized catalysts 3 has demonstrated a significant yield ~ 4000 μmolg−1 when compared with recent reports with exceptional selectivity for photocatalytic reduction of CO2 to methanol (MeOH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MOFs:

Metal-organic frameworks

Cu:

Copper

Ni:

Nickel

TiO2 :

Titanium dioxide

BTC:

Benzene tricarboxylic acid

SEM:

Scanning electron microscopy

FT-IR:

Fourier transform infrared spectroscopy

XRD:

X-ray powder diffraction

UV–Vis DRS:

UV–vis diffuse reflectance spectroscopy

References

  1. V. Kumaravel, J. Bartlett, C. Suresh, Pillai, Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 5(2), 486–519 (2020)

    Article  CAS  Google Scholar 

  2. A. Al-Saydeh, Sajeda, and Syed Javaid Zaidi. Carbon dioxide chemistry, capture and oil recovery. 41, 1-23 (2018)

  3. A. Yamasaki, An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. Journal of chemical engineering of Japan 36, 361–375 (2003)

    Article  CAS  Google Scholar 

  4. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, J. C. Minx, Technical Summary In: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 72, (2014)

  5. N.Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu (eds.) U.S. Global Change Research Program, Washington, DC, USA, 878 (2018) pp., https://doi.org/10.7930/SOCCR2.2018

  6. R. Sabouni, H. Kazemian, S. Rohani, Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ. Sci. Pollut. Res. 21, 5427–5449 (2014)

    Article  CAS  Google Scholar 

  7. M. Younas, M. Rezakazemi, M. Daud, M.B. Wazir, S. Ahmad, N. Ullah, Inamuddin, Seeram Ramakrishna, Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog. Energy Combust. Sci. 80(100849), 100849 (2020)

    Article  Google Scholar 

  8. F. Ahmadijokani, S. Tajahmadi, M. Rezakazemi, A.A. Sehat, D. Hossein Molavi, T.M. Aminabhavi, M. Arjmand, Aluminum-based metal-organic frameworks for adsorptive removal of anti-cancer (methotrexate) drug from aqueous solutions. J. Environ. Manag. 277(111448), 1–9 (2021)

    Google Scholar 

  9. F. Ahmadijokani, S. Ahmadipouy, H. Molavi, M. Rezakazemi, T.M. Aminabhavi, M. Arjmand, Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66. J. Environ. Manag. 274(111155), 111155 (2020)

    Article  CAS  Google Scholar 

  10. Inamuddin, H.A. Kashmery, Ternary graphene@polyaniline-TiO2 composite for glucose biofuel cell anode application. Int. J. Hydrog. Energy 44(39), 22173–22180 (2019)

    Article  CAS  Google Scholar 

  11. Inamuddin, K.A. Alamry, Application of electrically conducting nanocomposite material polythiophene@NiO/Frt/GOx as anode for enzymatic biofuel cells. Materials 13(1823), 1–12 (2020)

    Google Scholar 

  12. Penumaka Nagababu S. A. M. Ahmed, J. Nagarkar, R. J. Krupadam, G. Hippargi, Y. T. T. Prabhu, U. Pal, S. S. Rayalu, Improved heterogeneous catalytic conversion of methane to methanol at ambient conditions, Journal of Environmental Chemical Engineering, 8 104103 (2020).

  13. (a) B. Zhao, A.K. Gain, W. DinG, L. Zhang, X. Li, Y. Fu, A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int. J. Adv. Manuf. Technol. 95, 2641–2659 (2018); (b) Kannan, K., Sliem, M.H., Abdullah, A.M., Sadasivuni, K.K. and Kumar, B. Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction catalysts, 10 (5), 549 (2020).

  14. M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783–2828 (2019)

    Article  CAS  Google Scholar 

  15. H. Wang, Q. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017)

    Article  CAS  Google Scholar 

  16. A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkovc, Francis Verpoort, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44(6804-6849), 6804–6849 (2015)

    Article  CAS  Google Scholar 

  17. S. Goyal, M.S. Shaharun, C.F. Kait, B. Abdullah, M. Ameen, Photoreduction of carbon dioxide to methanol over copper based zeolitic imidazolate framework-8: a new generation photocatalyst. Catalysts 8, 581 (2018)

    Article  Google Scholar 

  18. Z. Zhong, S. Pang, Y. Wu, S. Jiang, J. Ouyang, Synthesis and characterization of mesoporous Cu–MOF for laccase immobilization. J. Chem. Technol. Biotechnol. 92, 1841–1847 (2017)

    Article  CAS  Google Scholar 

  19. N. Thanh Binh, P. Thi Thu, N. Thi Hong Le, D. Manh Tien, H. Thi Khuyen, L. T. Kieu Giang, N. Thanh H, T. Dai Lam, Study on preparation and properties of a novel photo-catalytic material based on copper-centred metal-organic frameworks (Cu-MOF) and titanium dioxide, Int. J. Nanotechnol 12, 5/6/7 (2015).

  20. A. Maleki, B. Hayati, M. Naghizadeh, S.W. Joo, Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J. Ind. Eng. Chem. 28, 211–216 (2015)

    Article  CAS  Google Scholar 

  21. (a) Trenton M. Tovar, Junjie Zhao, William T. Nunn, Heather F. Barton, Gregory W. Peterson, Gregory N. Parsons, and M. Douglas LeVan, Diffusion of CO2 in large crystals of Cu-BTC MOF, Journal of the American Chemical Society, 138 (36), 11449-11452 (2016), (b) Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science 283, 1148-1150 (1999).

  22. D.Y. Lee, D.V. Shinde, S.J. Yoon, K.N. Cho, W. Lee, N.K. Shrestha, S.-H. Han, J. Phys. Chem C. Cu-based metal–organic frameworks for photovoltaic application, 118 (30) 16328–16334(2013).

  23. L.-N. Jin, Q. Liu, & , W.-Y. Chin. Room temperature solution-phase synthesis of flower-like nanostructures of [Ni3(BTC)2·12H2O] and their conversion to porous NiO, Chem. Lett. 24, 663–667(2013).

    CAS  Google Scholar 

  24. V. Ramasubbu, S. Alwin, E.M. Mothi, X. Sahaya Shajan, TiO2 aerogel–Cu-BTC metal-organic framework composites for enhanced photon absorption. Mater. Lett. 197, 236–240 (2017)

    Article  CAS  Google Scholar 

  25. H. Wang, T. Yu, X. Tan, H. Zhang, P. Li, H. Liu, L. Shi, X. Li, J. Ye, Enhanced photocatalytic oxidation of isopropanol by HKUST-1@TiO2 core–shell structure with ultrathin anatase porous shell: toxic intermediate control. Ind. Eng. Chem. Res. 55(29), 8096–8103 (2016)

    Article  CAS  Google Scholar 

  26. K.L. Kauffman, J.T. Culp, A. Goodman, C. Matranga, FT-IR study of CO2 adsorption in a dynamic copper(II) benzoate−pyrazine host with CO2−CO2 interactions in the adsorbed state. J. Phys. Chem. C 115(5), 1857–1866 (2011)

    Article  CAS  Google Scholar 

  27. X.-J. Lv, S.-X. Zhou, C. Zhang, H.-X. Chang, Y. Chen, W.-F. Fu, Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting. J. Mater. Chem. 22, 18542–18549 (2012)

    Article  CAS  Google Scholar 

  28. G.D. Moon, J.B. Joo, I. Lee, Y. Yin, Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production. Nanoscale 6, 12002–12008 (2014)

    Article  CAS  Google Scholar 

  29. Y.T. Prabhu, Amit Gautam, Suman Lata Jain, Sreedhar Bojja, Ujjwal Pal, Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH, Journal of CO2 Utilization 31,207–214 (2019).

    Google Scholar 

  30. Qing Wang, Dong Xie, Junjia Chen, Guang Liu and Mingguang Yu, Superhydrophobic paper fabricated via nanostructured titanium dioxide-functionalized wood cellulose fibers, Journal of Materials Science, 55, 7084–7094(2020).

  31. Y. T. Prabhu, V. Navakoteswara Rao, M. V. Shankar, B. Sreedhar and Ujjwal Pal, New J. Chem., 43, 6794-6805(2019).

  32. L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, N. Zaman, Development of nickel-BTC-MOF-derived nanocomposites with rGO towards electrocatalytic oxidation of methanol and its product analysis, Catalysts 9 856-(2019).

  33. Y. T. Prabhu, A. Gautam, B. Sreedhar, S. L. Jain, U. Pal, Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH, Journal of CO2 Utilization, 2019, 31, 207–214.

  34. D. Tuncel, A.N. Ökte Efficient photoactivity of TiO2-hybrid-porous nanocomposite: Effect of humidity Applied Surface Science 458, 546–554(2018).

  35. P. Georgios, S.M. Wolfgang, X-ray photoelectron spectroscopy of anatase-TiO2 coated carbon nanotubes. Sol. St. Phen. 162, 163–177 (2010)

    Article  CAS  Google Scholar 

  36. Y. Liu, Y. Yang, Q. Sun, Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, ACS chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. Appl. Mater. Interfaces 5, 7654–7658 (2013)

    Article  CAS  Google Scholar 

  37. Q. Liu, Z.-X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H. Wang, ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 1, 11563–11569 (2013)

    Article  CAS  Google Scholar 

  38. J. Li, D. Luo, C. Yang, S. He, S. Chen, J. Lin, L. Zhu, X.J. Li, Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation. Sol. State Chem. 203, 154–159 (2013)

    Article  CAS  Google Scholar 

  39. S. Nadeem, A. Mumtaz, M. Mumtaz, M.A. Mutalib, M.S. Shaharun, B. Abdullah, Visible light driven CO2 reduction to methanol by Cu-porphyrin impregnated mesoporous Ti-MCM-48. J. Mol. Liq. 272, 656–667 (2018)

    Article  CAS  Google Scholar 

  40. A. Sharma, B.-K. Lee, Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber. Catal. Today 298, 158–167 (2017)

    Article  CAS  Google Scholar 

  41. J.F. Wang, P.F. Wang, J. Hou, J. Qian, C. Wang, Y.H. Ao, In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal. Sci. Technol. 8, 5406–5415 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PNB conceived the idea and conceptualized the research work. NB, MSS, AK, TP, and JN also prepared the catalyst and a few experiments and developed the original draft. MSS, SP, AK, and TP conducted experiments related to catalytic conversion of CO2 to methanol and GC–MS studies. SP and TBR analyzed the data.

Corresponding author

Correspondence to Penumaka Nagababu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagababu, P., Prabhu, Y.T., Kularkar, A. et al. Manifestation of Cu-MOF-templated TiO2 nanocomposite for synergistic photoreduction of CO2 to methanol production. emergent mater. 4, 503–514 (2021). https://doi.org/10.1007/s42247-021-00187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00187-5

Keywords

Navigation