Skip to main content
Log in

Incorporating of Cobalt into UiO-67 Metal–Organic Framework for Catalysis CO2 Transformations: An Efficient Bi-functional Approach for CO2 Insertion and Photocatalytic Reduction

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) transformation is a cutting-edge technology to eliminate greenhouse effects and produce valuable chemicals as well as fuels. Herein, we report an elaborate engineering for improving the efficiency of Zr-based Bipy-UiO-67 metal–organic framework (ZBU) in CO2 transformations. As demonstrated, tuning the catalytic performance by incorporating Co into ZBU (ZBU-Co) was realized as a practical strategy to affect the CO2 insertion to epoxides in terms of conversion, green procedure, recyclability, chemical/thermal stability, time, and energy. Also, extending the diversity of the reaction to bulky epoxides showed that increasing temperature is an effective remedy for achieving complete conversion. Importantly, in comparison with the homogeneous and heterogeneous counterparts, ZBU-Co illustrated superior results. On the other hand, ZBU-Co exhibited potential application in photocatalytic reduction of CO2, endowing bi-functional feature to the catalytic system. Accordingly, higher CO2 adsorption capacity and CO evolution were recorded for ZBU-Co compared to the pristine ZBU. Furthermore, the ability to recover the catalyst for four cycles is a valuable characteristic from environmentally/eco-friendly aspects, which further proves the versatility of the modified MOF in the photocatalytic reaction. Overall, ZBU-Co is considered a promising candidate for CO2 transformations due to the several advantages in CO2 insertion and photocatalytic reduction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. V. Humphrey, J. Zscheischler, P. Ciais, L. Gudmundsson, S. Sitch, S.I. Seneviratne, Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. B.J. Soden, W.D. Collins, D.R. Feldman, Reducing uncertainties in climate models. Science 361, 326–327 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. P. Yaashikaa, P.S. Kumar, S.J. Varjani, A. Saravanan, A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J. CO2 Util. 33, 131–147 (2019)

    Article  CAS  Google Scholar 

  4. N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: a review. Renew. Sust. Energ. Rev 15, 1513–1524 (2011)

    Article  Google Scholar 

  5. S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017)

    Article  ADS  Google Scholar 

  6. J. Raven, K. Caldeira, H. Elderfield, O. Hoegh-Guldberg, P. Liss, U. Riebesell, J. Shepherd, C. Turley, A. Watson, Ocean acidification due to increasing atmospheric carbon dioxide, R. Soc. (2005).

  7. L. Kapsenberg, S. Alliouane, F. Gazeau, L. Mousseau, J.-P. Gattuso, Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea. Ocean Sci. 13, 411–426 (2017)

    Article  ADS  CAS  Google Scholar 

  8. E. Rabinowitch, Photosynthesis, US Atomic Energy Commission (1949).

  9. J. Barber, Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. C. Yoo, Y.-E. Kim, Y. Lee, Selective transformation of CO2 to CO at a single nickel center. Acc. Chem. Res. 51, 1144–1152 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. G. Mele, C. Annese, A. De Riccardis, C. Fusco, L. Palmisano, G. Vasapollo, L. D’Accolti, Turning lipophilic phthalocyanines/TiO2 composites into efficient photocatalysts for the conversion of CO2 into formic acid under UV–vis light irradiation. Appl. Catal. A Catal A 481, 169–172 (2014)

    Article  CAS  Google Scholar 

  12. C. Wu, F. Irshad, M. Luo, Y. Zhao, X. Ma, S. Wang, Ruthenium complexes immobilized on an azolium based metal organic framework for highly efficient conversion of CO2 into formic acid. ChemCatChem 11, 1256–1263 (2019)

    Article  CAS  Google Scholar 

  13. Y. Zhang, T. Zhang, S. Das, Catalytic transformation of CO 2 into C1 chemicals using hydrosilanes as a reducing agent. Green Chem. 22, 1800–1820 (2020)

    Article  CAS  Google Scholar 

  14. D. Hidalgo, J. Martín-Marroquín, Power-to-methane, coupling CO2 capture with fuel production: an overviewRenew. Sust. Energ. Rev 132, 110057 (2020)

    Article  CAS  Google Scholar 

  15. A. Yahaya, M. Gondal, A. Hameed, Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem. Phys. Lett. 400, 206–212 (2004)

    Article  ADS  CAS  Google Scholar 

  16. K. Yang, J. Jiang, Transforming CO2 into methanol with N-heterocyclic carbene-stabilized coinage metal hydrides immobilized in a metal–organic framework UiO-68. ACS Appl. Mater. Interfaces 13, 58723–58736 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. J.A. Rodriguez, P. Liu, D.J. Stacchiola, S.D. Senanayake, M.G. White, J.G. Chen, Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal.Catal 5, 6696–6706 (2015)

    Article  CAS  Google Scholar 

  18. L. Wang, L. Wang, J. Zhang, X. Liu, H. Wang, W. Zhang, Q. Yang, J. Ma, X. Dong, S.J. Yoo, Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem. Int. Ed. 57, 6104–6108 (2018)

    Article  CAS  Google Scholar 

  19. L. Liu, A.V. Puga, J. Cored, P. Concepción, V. Pérez-Dieste, H. García, A. Corma, Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@ C nanocomposites. Appl. Catal. B 235, 186–196 (2018)

    Article  CAS  Google Scholar 

  20. R. Motterlini, B.E. Mann, R. Foresti, Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin. Invest. Drugs 14, 1305–1318 (2005)

    Article  CAS  Google Scholar 

  21. A. Nakao, Y. Toyoda, Application of carbon monoxide for transplantation. Curr Pharma Biotec 13, 827–836 (2012)

    Article  CAS  Google Scholar 

  22. E.V. Gusevskaya, J. Jiménez-Pinto, A. Börner, Hydroformylation in the realm of scents. ChemCatChem 6, 382–411 (2014)

    Article  CAS  Google Scholar 

  23. X. Yu, P.G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC). J. Power. Sources 182, 124–132 (2008)

    Article  ADS  CAS  Google Scholar 

  24. J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, H. Kieczka, Formic acid. Ullmann’s Encycl. Ind. Chem. 1, 1–22 (2016)

    Google Scholar 

  25. G. Maggio, S. Freni, S. Cavallaro, Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study. J. Power. Sources 74, 17–23 (1998)

    Article  ADS  CAS  Google Scholar 

  26. L. Spadaccini, M.C. Iii, Ignition delay characteristics of methane fuels. Prog. Energy Combust. Sci. Energy Combust. Sci 20, 431–460 (1994)

    Article  CAS  Google Scholar 

  27. S. Ma, P.J. Kenis, Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013)

    Article  Google Scholar 

  28. M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 15, 2975–2992 (2007)

    Article  Google Scholar 

  29. E. Alper, O.Y. Orhan, CO2 utilization: developments in conversion processes. Petroleum 3, 109–126 (2017)

    Article  Google Scholar 

  30. S. Klaus, M.W. Lehenmeier, C.E. Anderson, B. Rieger, Recent advances in CO2/epoxide copolymerization: new strategies and cooperative mechanisms. Coord. Chem. Rev. 255, 1460–1479 (2011)

    Article  CAS  Google Scholar 

  31. N. Fanjul-Mosteirín, C. Jehanno, F. Ruipérez, H. Sardon, A.P. Dove, Rational study of DBU salts for the CO2 insertion into epoxides for the synthesis of cyclic carbonates. ACS Sustain. Chem. Eng. 7, 10633–10640 (2019)

    Article  Google Scholar 

  32. F. Norouzi, H.R. Khavasi, Diversity-oriented metal decoration on UiO-type metal–organic frameworks: an efficient approach to increase CO2 uptake and catalytic conversion to cyclic carbonates. ACS Omega 4, 19037–19045 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Mohammadi, H.R. Khavasi, Anthracene-tagged UiO-67-MOF as highly selective aqueous sensor for nanoscale detection of arginine amino acid. Inorg. Chem. 59, 13091–13097 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. R. Babu, R. Roshan, A.C. Kathalikkattil, D.W. Kim, D.-W. Park, Rapid, microwave-assisted synthesis of cubic, three-dimensional, highly porous MOF-205 for room temperature CO2 fixation via cyclic carbonate synthesis. ACS Appl. Mater. Interfaces 8, 33723–33731 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. Z. Qin, H. Li, X. Yang, L. Chen, Y. Li, K. Shen, Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Appl. Catal. B Environ. 307, 121163 (2022)

    Article  CAS  Google Scholar 

  36. S.L. James, Metal-organic frameworks. Chem. Soc. Rev. 32, 276–288 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Chem 118, 6120–6124 (2006)

    Article  ADS  Google Scholar 

  38. J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 30, 1707634 (2018)

    Article  Google Scholar 

  40. F. Norouzi, H.R. Khavasi, Iodine decorated-UiO-67 MOF as a fluorescent sensor for the detection of halogenated aromatic hydrocarbons. New J. Chem. 44, 8937–8943 (2020)

    Article  CAS  Google Scholar 

  41. Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K.M. Rodriguez, S. Lin, F.M. Benedetti, A.X. Wu, W.S. Chi, Z.P. Smith, MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. C. Petit, Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 20, 132–142 (2018)

    Article  Google Scholar 

  43. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008)

    Article  PubMed  Google Scholar 

  44. A.H. Vahabi, F. Norouzi, E. Sheibani, M. Rahimi-Nasrabadi, Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coord. Chem. Rev. 445, 214050 (2021)

    Article  CAS  Google Scholar 

  45. A. Helal, F. Alahmari, M. Usman, Z.H. Yamani, Chalcopyrite UiO-67 metal-organic framework composite for CO2 fixation as cyclic carbonates. J. Environ. Chem. Eng. 10, 108061 (2022)

    Article  CAS  Google Scholar 

  46. L.-G. Ding, B.-J. Yao, W.-L. Jiang, J.-T. Li, Q.-J. Fu, Y.-A. Li, Z.-H. Liu, J.-P. Ma, Y.-B. Dong, Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides. Inorg. Chem. 56, 2337–2344 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. E.S. Gutterød, S. Øien-Ødegaard, K. Bossers, A.-E. Nieuwelink, M. Manzoli, L. Braglia, A. Lazzarini, E. Borfecchia, S. Ahmadigoltapeh, B. Bouchevreau, B.T. Lønstad-Bleken, R. Henry, C. Lamberti, S. Bordiga, B.M. Weckhuysen, K.P. Lillerud, U. Olsbye, CO2 Hydrogenation over Pt-containing UiO-67 Zr-MOFs: the base case. Ind. Eng. Chem. Res. 56, 13206–13218 (2017)

    Article  Google Scholar 

  48. D. Jiang, Y. Shi, G. Zhao, X. Gong, J. Liu, D. Lan, L. Zhang, J. Ge, H. Fang, D. Cheng, Pt–Ni alloy nanobead chains catalysts embedded in UiO-67 membrane for enhanced CO2 conversion to CO. Mater. Today Energy 28, 101051 (2022)

    Article  CAS  Google Scholar 

  49. X. Zhao, M. Xu, X. Song, X. Liu, W. Zhou, H. Wang, P. Huo, Tailored linker defects in UiO-67 with high ligand-to-metal charge transfer toward efficient photoreduction of CO2. Inorg. Chem. 61, 1765–1777 (2022)

    Article  CAS  PubMed  Google Scholar 

  50. H. Xu, X. Luo, J. Wang, Y. Su, X. Zhao, Y. Li, Spherical sandwich Au@ Pd@ UIO-67/Pt@ UIO-n (n= 66, 67, 69) core–shell catalysts: Zr-based metal–organic frameworks for effectively regulating the reverse water–gas shift reaction. ACS Appl. Mater. Interfaces 11, 20291–20297 (2019)

    Article  CAS  PubMed  Google Scholar 

  51. X. Gao, B. Guo, C. Guo, Q. Meng, J. Liang, J. Liu, Zirconium-based metal–organic framework for efficient photocatalytic reduction of CO2 to CO: the influence of doped metal ions. ACS Appl. Mater. Interfaces 12, 24059–24065 (2020)

    Article  CAS  PubMed  Google Scholar 

  52. S. Subudhi, D. Rath, K. Parida, S. Satyabrata, D. Rath, K.M. Parida, A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catal. Sci. Technol.. Sci. Technol 8, 679–696 (2018)

    Article  CAS  Google Scholar 

  53. P. Behera, S. Subudhi, S.P. Tripathy, K. Parida, MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord. Chem. Rev.. Chem. Rev 456, 214392 (2022)

    Article  CAS  Google Scholar 

  54. J. Panda, S.P. Tripathy, S. Dash, A. Ray, P. Behera, S. Subudhi, K. Parida, Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. Nanoscale 15, 7640–7675 (2023)

    Article  CAS  PubMed  Google Scholar 

  55. S.P. Tripathy, S. Subudhi, K. Parida, Inter-MOF hybrid (IMOFH): a concise analysis on emerging core–shell based hierarchical and multifunctional nanoporous materials. Coord. Chem. Rev. 434, 213786 (2021)

    Article  CAS  Google Scholar 

  56. J. Qin, S. Wang, X. Wang, Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B 209, 476–482 (2017)

    Article  CAS  Google Scholar 

  57. W. Liu, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Y. Shi, S. Hou, X. Qiu, B. Zhao, MOFs-based catalysts supported chemical conversion of CO2. Metal-Organic Framew. 8, 373–426 (2020)

    Article  Google Scholar 

  59. Q.-L. Zhu, J. Li, Q. Xu, Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 135, 10210–10213 (2013)

    Article  CAS  PubMed  Google Scholar 

  60. H. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation. Appl. Surf. Sci. 439, 552–559 (2018)

    Article  ADS  CAS  Google Scholar 

  61. Y. Gao, L. Ye, H. Chen, L. Sun, Highly efficient photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt bipyridyl complex. J. Energy Chem. 27, 502–506 (2018)

    Article  Google Scholar 

  62. T. Ouyang, H.H. Huang, J.W. Wang, D.C. Zhong, T.B. Lu, A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem. 129, 756–761 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

No funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally for producing the materials and contents for the manuscript.

Corresponding author

Correspondence to Ali Alsaalamy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the submitted manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3212 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-dolaimy, F., Kzar, M.H., Hussein, S.A. et al. Incorporating of Cobalt into UiO-67 Metal–Organic Framework for Catalysis CO2 Transformations: An Efficient Bi-functional Approach for CO2 Insertion and Photocatalytic Reduction. J Inorg Organomet Polym 34, 864–873 (2024). https://doi.org/10.1007/s10904-023-02860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02860-0

Keywords

Navigation