Skip to main content
Log in

Machine learning study on time–temperature–transformation diagram of carbon and low-alloy steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Time–temperature–transformation (TTT) diagram plays a critical role in designing appropriate heat treatment process of steels by describing the relationship among holding time, temperature, and quantities of phase transformation. Making predictions for TTT diagrams of new steel rapidly and accurately is therefore of much practical importance, especially for costly and time-consuming experimental determination. Here, TTT diagrams for carbon and low-alloy steels were predicted using machine learning methods. Five commonly used machine learning (ML) algorithms, backpropagation artificial neural network (BP network), LibSVM, k-nearest neighbor, Bagging, and Random tree, were adopted to select appropriate models for the prediction. The results illustrate that Bagging is the optimal model for the prediction of pearlite transformation and bainite transformation, and BP network is the optimal model for martensite transformation. Finally, the ML framework composed of Bagging and BP network models was applied to predict the entire TTT diagram. Additionally, the ML models show superior performance on the prediction of testing samples than the commercial software JMatPro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Schumacher, C.J. Marvel, M.N. Kelly, P.R. Cantwell, R.P. Vinci, J.M. Rickman, G.S. Rohrer, M.P. Harmer, Curr. Opin. Solid State Mater. Sci. 20 (2016) 316–323.

    Article  Google Scholar 

  2. K.G. Yang, Isothermal transformation curve of steel, Heilongjiang People's Publishing House, Heilongjiang, China, 1981.

    Google Scholar 

  3. B.B. Zhang, Z.H. Jiang, H.B. Li, S.C. Zhang, H. Feng, H. Li, Mater. Charact. 129 (2017) 31–39.

    Article  Google Scholar 

  4. C.J. Wu, G.L. Chen, W.J. Qiang, Metal materials science, 2nd ed., Metallurgical Industry Press, Beijing, China, 2009.

    Google Scholar 

  5. M. Villa, M.A.J. Somers, in: A. Stebner, G. Olson (Eds.), Proceedings of the International Conference on Martensitic Transformations, Springer, Chicago, USA, 2018, pp. 13–19.

  6. J.L. Lee, H. Bhadeshia, Mater. Sci. Eng. A 171 (1993) 223–230.

    Article  Google Scholar 

  7. M. Umemto, N. Nishioka, I. Tamura, Trans. Iron Steel Inst. Jpn. 22 (1982) 629–636. https://doi.org/10.2355/TETSUTOHAGANE1955.68.2_292.

    Article  Google Scholar 

  8. J.S. Kirkaldy, D. Venugopalan, Phase transformations in ferrous alloys, AIME, New York, USA, 1983.

    Google Scholar 

  9. N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, J.Ph. Schillé, JOM 55 (2003) 60–65.

    Article  Google Scholar 

  10. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schillé, JMatPro Software Literature (2004) https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6565ad0d5b6cac5e866ebcee4c66ef8b08083c30.

  11. S. Guo, J.X. Yu, X.J. Liu, C.P. Wang, Q.S. Jiang, Comp. Mater. Sci. 160 (2019) 95–104.

    Article  Google Scholar 

  12. K. Takahashi, Y. Tanaka, Comp. Mater. Sci. 112 (2016) 364–367.

    Article  Google Scholar 

  13. B.A. Moore, E. Rougier, D. O’Malley, G. Srinivasan, A. Hunter, H. Viswanathan, Comp. Mater. Sci. 148 (2018) 46–53.

    Article  Google Scholar 

  14. S. Altarazi, R. Allaf, F. Alhindawi, Materials 12 (2019) 1475.

    Article  Google Scholar 

  15. L.A. Dobrzański, J. Trzaska, Comp. Mater. Sci. 30 (2004) 251–259.

    Article  Google Scholar 

  16. C.Y. Zhang, Z. Wang, C.W. Fei, Z.S. Yuan, J.S. Wei, W.Z. Tang, Materials 12 (2019) 2341.

    Article  Google Scholar 

  17. S.P. Ong, Comp. Mater. Sci. 161 (2019) 143–150.

    Article  Google Scholar 

  18. D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, T. Lookman, Nat. Comun. 7 (2016) 11241.

    Article  Google Scholar 

  19. M. Kundu, S. Ganguly, S. Datta, P.P. Chattopadhyay, Mater. Manuf. Processes 24 (2009) 169–173.

    Article  Google Scholar 

  20. P. Nandakumar, R. Karthikeyan, IOP Conf. Ser. Mater. Sci. Eng. 346 (2018) 012067.

    Google Scholar 

  21. L. Qiao, J.C. Zhu, Y. Wang, Adv. Eng. Mater. 23 (2021) 2001299.

    Article  Google Scholar 

  22. X.Y. Huang, H. Wang, W.H. Xue, S. Xiang, H.L. Huang, L. Meng, G. Ma, A. Ullah, G.Z. Zhang, Comp. Mater. Sci. 171 (2020) 109282.

    Article  Google Scholar 

  23. X.Y. Huang, H. Wang, W.H. Xue, S. Xiang, H.L. Huang, L. Meng, G. Ma, A. Ullah, G.Z. Zhang, J. Alloy. Compd. 823 (2020) 153694.

    Article  Google Scholar 

  24. V. Vander, Atlas of time–temperature diagrams for irons and steels, ASM International Materials Park, Ohio, USA, 1991.

    Google Scholar 

  25. G. Khalaj, A. Nazari, H. Yoozbashizadeh, M. Jahazi, Neural. Comput. Appl. 24 (2014) 301–308.

    Article  Google Scholar 

  26. X. Jiang, H.Q. Yin, C. Zhang, R.J. Zhang, K.Q. Zhang, Z.H. Deng, G.Q. Liu, X.H. Qu, Comp. Mater. Sci. 143 (2018) 295–300.

    Article  Google Scholar 

  27. X.H. Fan, B. Xu, J. Li, Y. Xu, S. Lei, F.M. Wang, J.P. Lin, Adv. Mater. Res. 706 (2013) 1837–1840.

    Article  Google Scholar 

  28. M.Y. Yuan, Data mining and machine learning: WEKA application technology and practice, 2nd ed., Tsinghua University Press, Beijing, China, 2016.

    Google Scholar 

  29. C. Wang, K. Zhu, P. Hedström, Y. Li, W. Xu, J. Mater. Sci. Technol. 128 (2022) 31–43.

    Article  Google Scholar 

  30. J. Peng, Y. Yamamoto, J.A. Hawk, E.L. Curzio, D. Shin, npj Comput. Mater. 6 (2020) 141.

    Google Scholar 

  31. Q. Lu, S.L. Liu, W. Li, X.J. Jin, Mater. Des. 192 (2020) 108696.

    Article  Google Scholar 

  32. C. Shen, C. Wang, X. Wei, Y. Li, S. Zwaag, W. Xu, Acta Mater. 179 (2019) 201–214.

    Article  Google Scholar 

Download references

Acknowledgements

This project has received the financial support from the National Natural Science Foundation of China (Grant No. 92060102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Xy., Zhang, B., Tian, Q. et al. Machine learning study on time–temperature–transformation diagram of carbon and low-alloy steel. J. Iron Steel Res. Int. 30, 1032–1041 (2023). https://doi.org/10.1007/s42243-023-00932-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00932-6

Keywords

Navigation