Skip to main content
Log in

Distribution of oxide inclusions in H13 castings under super-gravity field with multi-stage rotation speeds

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The 42 kg industrial H13 castings were prepared by different super-gravity fields with multi-rotation speeds, and the distribution of oxide inclusions in the castings was studied. In addition, the inward movement Reynolds number and inward movement time of oxide inclusions as well as the solidification time of molten steel at different positions in the castings were calculated to clarify the removal mechanism of oxide inclusions in super-gravity field. The results show that the large size (i.e., greater than 10 μm) oxide inclusions are mainly concentrated in the inner and outer parts of the super-gravity castings with constant rotation speed (500 r min−1) and five-stage rotation speeds (500, 600, 750, 850, and 950 r min−1), respectively, while there are no large oxide inclusions in the super-gravity castings with three-stage rotation speeds (500, 600, and 750 r min−1). Although an increase in the particle size of inclusion and the rotation speed in super-gravity field is conducive to the increase in the inward movement Reynolds number of oxide inclusions and reduction in the inward movement time of oxide inclusions, it will reduce the local solidification time of molten steel. In the range of the rotation speed studied, the super-gravity field with three-stage rotation speeds has the best effect on the removal of inclusions in H13 molten steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Zhu, Z.H. Zhang, J.X. Xie, Mater. Sci. Eng. A 752 (2019) 101–114.

    Article  CAS  Google Scholar 

  2. C. Meng, H. Zhou, H.F. Zhang, X. Tong, D.L. Cong, C.W. Wang, L.Q. Ren, Mater. Des. 51 (2013) 886–893.

    Article  CAS  Google Scholar 

  3. C.B. Shi, ISIJ Int. 60 (2020) 1083–1096.

    Article  CAS  Google Scholar 

  4. C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu, H. Ren, Steel Res. Int. 83 (2012) 472–486.

    Article  CAS  Google Scholar 

  5. C.B. Shi, J.S. Wang, J. Li, J.W. Cho, J. Iron Steel Res. Int. 28 (2021) 1483–1503.

    Article  Google Scholar 

  6. K.Y. Miao, M. Nabeel, N. Dogan, S. Sun, Metall. Mater. Trans. B 52 (2021) 3151–3166.

    Article  CAS  Google Scholar 

  7. L.T. Wang, Q.Y. Zhang, S.H. Peng, Z.B. Li, ISIJ Int. 45 (2005) 331–337.

    Article  CAS  Google Scholar 

  8. Z. Taslicukur, C. Balaban, N. Kuskonmaz, J. Eur. Ceram. Soc. 27 (2007) 637–640.

    Article  CAS  Google Scholar 

  9. L. Zhang, S. Taniguchi, Int. Mater. Rev. 45 (2000) 59–82.

    Article  CAS  Google Scholar 

  10. Y. Miki, H. Kitaoka, T. Sakuraya, T. Fujii, ISIJ Int. 32 (1992) 142–149.

    Article  CAS  Google Scholar 

  11. Y. Miki, S. Ogura, T. Fujii, Kawasaki Steel Tech. Rep. (1996) No. 35, 67–73.

  12. Y. Kusano, Y. Kawauchi, M. Wajima, K. Sugawara, M. Yoshida, H. Hayashi, ISIJ Int. 36 (1996) S77–S80.

    Article  Google Scholar 

  13. X.F Zheng, P.C Hayes, H.G. Lee, ISIJ Int. 37 (1997) 1091–1097.

    Article  CAS  Google Scholar 

  14. A. Weidner, D. Krewerth, B. Witschel, M. Emmel, A. Schmidt, J. Gleinig, O. Volkova, C.G. Aneziris, H. Biermann, Steel Res. Int. 87 (2016) 1038–1053.

    Article  CAS  Google Scholar 

  15. A. Das, A. Bhowal, S. Datta, Ind. Eng. Chem. Res. 47 (2008) 4230–4235.

    Article  CAS  Google Scholar 

  16. C.C. Lin, K.S. Chien, Separ. Purif. Technol. 63 (2008) 138–144.

    Article  CAS  Google Scholar 

  17. Y.S. Chen, F.Y. Lin, C.C. Lin, C.Y.D. Tai, H.S. Liu, Ind. Eng. Chem. Res. 45 (2006) 6846–6853.

    Article  CAS  Google Scholar 

  18. T. Liu, Z.C. Guo, Z. Wang, M.Y. Wang, Appl. Surf. Sci. 256 (2010) 6634–6640.

    Article  CAS  Google Scholar 

  19. M.Y. Wang, Z. Wang, Z.C. Guo, Z.J. Li, Int. J. Hydrogen Energy 36 (2011) 3305–3312.

    Article  Google Scholar 

  20. C. Li, J.T. Gao, Z.C. Guo, Metall. Mater. Trans. B 47 (2016) 1516–1519.

    Article  CAS  Google Scholar 

  21. L.X. Zhao, Z.C. Guo, Z. Wang, M.Y. Wang, Metall. Mater. Trans. B 41 (2010) 505–508.

    Article  Google Scholar 

  22. G.Y. Song, B. Song, Y.H. Yang, Z.B. Yang, W.B. Xin, Metall. Mater. Trans. B 46 (2015) 2190–2197.

    Article  CAS  Google Scholar 

  23. C. Li, J.T. Gao, Z. Wang, Z.C. Guo, Metall. Mater. Trans. B 48 (2017) 900–907.

    Article  CAS  Google Scholar 

  24. G.Y. Song, B. Song, Z.B. Yang, Y.H. Yang, J. Zhang, Metall. Mater. Trans. B 47 (2016) 3435–3445.

    Article  CAS  Google Scholar 

  25. Y. Li, J.T. Gao, Z.L. Huang, Z.C. Guo, Ceram. Int. 45 (2019) 10961–10968.

    Article  CAS  Google Scholar 

  26. C. Li, J.T. Gao, Z. Wang, H.R. Ren, Z.C. Guo, ISIJ Int. 57 (2017) 767–769.

    Article  CAS  Google Scholar 

  27. U.D. Salgado, C. Weiß, S.K. Michelic, C. Bernhard, Metall. Mater. Trans. B 49 (2018) 1632–1643.

    Article  Google Scholar 

  28. X.C. Huang, B.K. Li, Z.Q. Liu, X. Yang, F. Tsukihashi, Int. J. Heat Mass Transfer 135 (2019) 1300–1311.

    Article  Google Scholar 

  29. M.Y. Zhu, W.T. Lou, W.L. Wang, Acta Metall. Sin. 54 (2018) 131–150.

    CAS  Google Scholar 

  30. X.C. Chen, Development of a new process of induction electroslag centrifugal casting and its finite element simulation, University of Science and Technology Beijing, Beijing, China, 2001.

    Google Scholar 

  31. D.G. Zhao, M. Gao, X. Li, S.H. Wang, J. Iron Steel Res. 29 (2017) 32–38.

    Google Scholar 

  32. W. Liu, S.F. Yang, J.S. Li, F. Wang, H.B. Yang, J. Iron Steel Res. Int. 26 (2019) 1147–1153.

    Article  CAS  Google Scholar 

  33. X.H. Wang, Ironmaking and steel metallurgy — steelmaking, Higher Education Press, Beijing, China, 2007.

    Google Scholar 

  34. C. Li, Fundamental research on treatment of molten steel and steelmaking slag with super-gravity, University of Science and Technology Beijing, Beijing, China 2017.

    Google Scholar 

  35. J.M. Du, Q.Z. Shen, Metallurgical transmission principle, Metallurgical Industry Press, Beijing, China, 2011.

    Google Scholar 

  36. A. Kroupa, J. Havránková, M. Svoboda, M. Coufalová, J. Vřešt'ál, J. Phase Equilib. 22 (2001) 312.

    Article  CAS  Google Scholar 

  37. M.T. Mao, Investigation of precipitation and elimination of primary carbide in H13 steel, University of Science and Technology Beijing, Beijing, China, 2017.

    Google Scholar 

  38. S.Y. Li, S.Y. Qin, X.J. Xi, G.Y. Sun, W.S. Yang, J. Guo, H.J. Guo, Metals 10 (2020) 1428.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by China Postdoctoral Fund (No. 2021M700394) and Key R&D Plan of Shandong Province in 2021 (No. 2021CXGC010209). The authors thank the Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials for its support. The authors wish to thank the timely help given by Li-hui Han in University of Science and Technology Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-jie Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sy., Xi, Xj., Zhao, Xm. et al. Distribution of oxide inclusions in H13 castings under super-gravity field with multi-stage rotation speeds. J. Iron Steel Res. Int. 31, 121–133 (2024). https://doi.org/10.1007/s42243-022-00823-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00823-2

Keywords

Navigation