Skip to main content
Log in

An Efficient Multilevel Threshold Image Segmentation Method for COVID-19 Imaging Using Q-Learning Based Golden Jackal Optimization

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

From the end of 2019 until now, the Coronavirus Disease 2019 (COVID-19) has been rampaging around the world, posing a great threat to people's lives and health, as well as a serious impact on economic development. Considering the severely infectious nature of COVID-19, the diagnosis of COVID-19 has become crucial. Identification through the use of Computed Tomography (CT) images is an efficient and quick means. Therefore, scientific researchers have proposed numerous segmentation methods to improve the diagnosis of CT images. In this paper, we propose a reinforcement learning-based golden jackal optimization algorithm, which is named QLGJO, to segment CT images in furtherance of the diagnosis of COVID-19. Reinforcement learning is combined for the first time with meta-heuristics in segmentation problem. This strategy can effectively overcome the disadvantage that the original algorithm tends to fall into local optimum. In addition, one hybrid model and three different mutation strategies were applied to the update part of the algorithm in order to enrich the diversity of the population. Two experiments were carried out to test the performance of the proposed algorithm. First, compare QLGJO with other advanced meta-heuristics using the IEEE CEC2022 benchmark functions. Secondly, QLGJO was experimentally evaluated on CT images of COVID-19 using the Otsu method and compared with several well-known meta-heuristics. It is shown that QLGJO is very competitive in benchmark function and image segmentation experiments compared with other advanced meta-heuristics. Furthermore, the source code of the QLGJO is publicly available at https://github.com/Vang-z/QLGJO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69

Similar content being viewed by others

Data Availability

The COVID-19 datasets analyzed during the current study are available in the [COVID-CT-Dataset] repository, [https://arxiv.org/abs/2003.13865].

References

  1. Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C., Giattino, C., & Rodés-Guirao, L. (2021). A global database of COVID-19 vaccinations. Nature Human Behaviour, 5, 947–953. https://doi.org/10.1038/s41562-021-01122-8

    Article  Google Scholar 

  2. Ndwandwe, D., & Wiysonge, C. S. (2021). COVID-19 vaccines. Current Opinion in Immunology, 71, 111–116. https://doi.org/10.1016/j.coi.2021.07.003

    Article  Google Scholar 

  3. Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clinical Immunology, 215, 108427. https://doi.org/10.1016/j.clim.2020.108427

    Article  Google Scholar 

  4. Cruz-Cárdenas, J., Zabelina, E., Guadalupe-Lanas, J., Palacio-Fierro, A., & Ramos-Galarza, C. (2021). COVID-19, consumer behavior, technology, and society: A literature review and bibliometric analysis. Technological Forecasting and Social Change., 173, 121179. https://doi.org/10.1016/j.techfore.2021.121179

    Article  Google Scholar 

  5. Lee, D. Y. W., Li, Q. Y., Liu, J., & Efferth, T. (2021). Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine, 80, 153337. https://doi.org/10.1016/j.phymed.2020.153337

    Article  Google Scholar 

  6. Grodecki, K., Lin, A., Razipour, A., Cadet, S., McElhinney, P. A., Chan, C., Pressman, B. D., Julien, P., Maurovich-Horvat, P., Gaibazzi, N., Thakur, U., Mancini, E., Agalbato, C., Menè, R., Parati, G., Cernigliaro, F., Nerlekar, N., Torlasco, C., Pontone, G., … Dey, D. (2021). Epicardial adipose tissue is associated with extent of pneumonia and adverse outcomes in patients with COVID-19. Metabolism, 115, 154436. https://doi.org/10.1016/j.metabol.2020.154436

    Article  Google Scholar 

  7. Caramello, V., Macciotta, A., De Salve, A. V., Mussa, A., De Leo, A. M., Bar, F., Panno, D., Nota, F., Ling, C. Y. G., Solitro, F., Ricceri, F., Sacerdote, C., & Boccuzzi, A. (2021). False-negative real-time polymerase chain reaction tests in COVID-19 patients: An epidemiological analysis of 302 patients. Public Health, 200, 84–90. https://doi.org/10.1016/j.puhe.2021.09.010

    Article  Google Scholar 

  8. Jalaber, C., Lapotre, T., Morcet-Delattre, T., Ribet, F., Jouneau, S., & Lederlin, M. (2020). Chest CT in COVID-19 pneumonia: A review of current knowledge. Diagnostic and Interventional Imaging, 101, 431–437. https://doi.org/10.1016/j.diii.2020.06.001

    Article  Google Scholar 

  9. Elaziz, M. A., Ewees, A. A., Yousri, D., Alwerfali, H. S. N., Awad, Q. A., Lu, S., & Al-Qaness, M. A. A. (2020). An improved marine predators algorithm with Fuzzy entropy for multi-level thresholding: Real world example of COVID-19 CT image segmentation. IEEE Access, 8, 125306–125330. https://doi.org/10.1109/ACCESS.2020.3007928

    Article  Google Scholar 

  10. Gao, Y., Li, Q., Wang, S., & Gao, J. (2018). Adaptive neural network based on segmented particle swarm optimization for remote-sensing estimations of vegetation biomass. Remote Sensing of Environment, 211, 248–260. https://doi.org/10.1016/j.rse.2018.04.026

    Article  Google Scholar 

  11. Houssein, E. H., Saber, E., Ali, A. A., & Wazery, Y. M. (2022). Centroid mutation-based search and rescue optimization algorithm for feature selection and classification. Expert Systems with Applications, 191, 116235. https://doi.org/10.1016/j.eswa.2021.116235

    Article  Google Scholar 

  12. Houssein, E. H., Helmy, B. E., Oliva, D., Elngar, A. A., & Shaban, H. (2021). A novel black widow optimization algorithm for multilevel thresholding image segmentation. Expert Systems with Applications, 167, 114159. https://doi.org/10.1016/j.eswa.2020.114159

    Article  Google Scholar 

  13. Houssein, E. H., Emam, M. M., & Ali, A. A. (2021). An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Systems with Applications, 185, 115651. https://doi.org/10.1016/j.eswa.2021.115651

    Article  Google Scholar 

  14. Kumar, M., Aggarwal, J., Rani, A., Stephan, T., Shankar, A., & Mirjalili, S. (2022). Secure video communication using firefly optimization and visual cryptography. Artificial Intelligence Review, 55, 2997–3017. https://doi.org/10.1007/s10462-021-10070-8

    Article  Google Scholar 

  15. Zhi, X. H., & Shen, H. B. (2018). Saliency driven region-edge-based top down level set evolution reveals the asynchronous focus in image segmentation. Pattern Recognition, 80, 241–255. https://doi.org/10.1016/j.patcog.2018.03.010

    Article  Google Scholar 

  16. Fang, J., Liu, H., Zhang, L., Liu, J., & Liu, H. (2021). Region-edge-based active contours driven by hybrid and local fuzzy region-based energy for image segmentation. Information Sciences, 546, 397–419. https://doi.org/10.1016/j.ins.2020.08.078

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, S., Wang, P., Heidari, A. A., Chen, H., Turabieh, H., Mafarja, M., & Li, C. (2021). Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease. Computers in Biology and Medicine, 134, 104427. https://doi.org/10.1016/j.compbiomed.2021.104427

    Article  Google Scholar 

  18. Parida, P., & Bhoi, N. (2018). Fuzzy clustering based transition region extraction for image segmentation. Engineering Science and Technology, an International Journal, 21, 547–563. https://doi.org/10.1016/j.jestch.2018.05.012

    Article  Google Scholar 

  19. Zhao, S., Wang, P., Heidari, A. A., Chen, H., He, W., & Xu, S. (2021). Performance optimization of salp swarm algorithm for multi-threshold image segmentation: Comprehensive study of breast cancer microscopy. Computers in Biology and Medicine, 139, 105015. https://doi.org/10.1016/j.compbiomed.2021.105015

    Article  Google Scholar 

  20. Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Liang, G., Muhammad, K., & Chen, H. (2021). Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowledge-Based Systems, 216, 106510. https://doi.org/10.1016/j.knosys.2020.106510

    Article  Google Scholar 

  21. Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Oliva, D., Muhammad, K., & Chen, H. (2021). Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation. Expert Systems with Applications, 167, 114122. https://doi.org/10.1016/j.eswa.2020.114122

    Article  Google Scholar 

  22. Yan, Z., Zhang, J., Yang, Z., & Tang, J. (2021). Kapur’s entropy for underwater multilevel thresholding image segmentation based on whale optimization algorithm. IEEE Access, 9, 41294–41319. https://doi.org/10.1109/ACCESS.2020.3005452

    Article  Google Scholar 

  23. Wang, Y., Zhang, G., & Zhang, X. (2019). Multilevel image thresholding using Tsallis entropy and cooperative pigeon-inspired optimization bionic algorithm. Journal of Bionic Engineering, 16, 954–964. https://doi.org/10.1007/s42235-019-0109-1

    Article  Google Scholar 

  24. Sharma, A., Chaturvedi, R., Kumar, S., & Dwivedi, U. K. (2020). Multi-level image thresholding based on Kapur and Tsallis entropy using firefly algorithm. Journal of Interdisciplinary Mathematics, 23, 563–571. https://doi.org/10.1080/09720502.2020.1731976

    Article  Google Scholar 

  25. Bansal, J. C. (2019). Particle swarm optimization. Evolutionary and Swarm Intelligence Algorithms, 779, 11–23. https://doi.org/10.1007/978-3-319-91341-4_2

    Article  Google Scholar 

  26. Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  27. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  28. Wang, G. G., Zhao, X., & Deb, S. (2015). A novel monarch butterfly optimization with greedy strategy and self-adaptive. Second International Conference on Soft Computing and Machine Intelligence (ISCMI), 2015, 45–50. https://doi.org/10.1109/ISCMI.2015.19

    Article  Google Scholar 

  29. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  30. Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27, 495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  31. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  32. Hayyolalam, V., & Pourhaji Kazem, A. A. (2020). Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 87, 103249. https://doi.org/10.1016/j.engappai.2019.103249

    Article  Google Scholar 

  33. Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  34. Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.2021.114864

    Article  Google Scholar 

  35. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079. https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  36. Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152, 113377. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  37. Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  38. Su, H., Zhao, D., Heidari, A. A., Liu, L., Zhang, X., Mafarja, M., & Chen, H. (2023). RIME: A physics-based optimization. Neurocomputing, 532, 183–214. https://doi.org/10.1016/j.neucom.2023.02.010

    Article  Google Scholar 

  39. Chopra, N., & Mohsin Ansari, M. (2022). Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Systems with Applications, 198, 116924. https://doi.org/10.1016/j.eswa.2022.116924

    Article  Google Scholar 

  40. Rezaie, M., Karamnejadiazar, K., Kardansani, A., Akbari, E., Ghadimi, N., Razmjooy, N., & Ghadamyari, M. (2022). Model parameters estimation of the proton exchange membrane fuel cell by a modified golden jackal optimization. Sustainable Energy Technologies and Assessments, 53, 102657. https://doi.org/10.1016/j.seta.2022.102657

    Article  Google Scholar 

  41. Houssein, E. H., Abdelkareem, D. A., Emam, M. M., Hameed, M. A., & Younan, M. (2022). An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm. Computers in Biology and Medicine, 149, 106075. https://doi.org/10.1016/j.compbiomed.2022.106075

    Article  Google Scholar 

  42. Zhang, J., Zhang, G., Kong, M., & Zhang, T. (2023). Adaptive infinite impulse response system identification using an enhanced golden jackal optimization. The Journal of Supercomputing. https://doi.org/10.1007/s11227-023-05086-6

    Article  Google Scholar 

  43. Huo, F., Sun, X., & Ren, W. (2020). Multilevel image threshold segmentation using an improved bloch quantum artificial bee colony algorithm. Multimedia Tools and Applications, 79, 2447–2471. https://doi.org/10.1007/s11042-019-08231-7

    Article  Google Scholar 

  44. Xing, Z. (2020). An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowledge-Based Systems, 194, 105570. https://doi.org/10.1016/j.knosys.2020.105570

    Article  Google Scholar 

  45. Upadhyay, P., & Chhabra, J. K. (2020). Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Applied Soft Computing, 97, 105522. https://doi.org/10.1016/j.asoc.2019.105522

    Article  Google Scholar 

  46. Abd Elaziz, M., Nabil, N., Moghdani, R., Ewees, A. A., Cuevas, E., & Lu, S. (2021). Multilevel thresholding image segmentation based on improved volleyball premier league algorithm using whale optimization algorithm. Multimedia Tools and Applications, 80, 12435–12468. https://doi.org/10.1007/s11042-020-10313-w

    Article  Google Scholar 

  47. Abd Elaziz, M., Mohammadi, D., Oliva, D., & Salimifard, K. (2021). Quantum marine predators algorithm for addressing multilevel image segmentation. Applied Soft Computing, 110, 107598. https://doi.org/10.1016/j.asoc.2021.107598

    Article  Google Scholar 

  48. Houssein, E. H., Helmy, B.E.-D., Elngar, A. A., Abdelminaam, D. S., & Shaban, H. (2021). An improved tunicate swarm algorithm for global optimization and image segmentation. IEEE Access, 9, 56066–56092. https://doi.org/10.1109/ACCESS.2021.3072336

    Article  Google Scholar 

  49. Houssein, E. H., Hussain, K., Abualigah, L., Elaziz, M. A., Alomoush, W., Dhiman, G., Djenouri, Y., & Cuevas, E. (2021). An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowledge-Based Systems, 229, 107348. https://doi.org/10.1016/j.knosys.2021.107348

    Article  Google Scholar 

  50. Houssein, E. H., Helmy, B. E., Oliva, D., Jangir, P., Premkumar, M., Elngar, A. A., & Shaban, H. (2022). An efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer. Biomedical Signal Processing and Control, 73, 103401. https://doi.org/10.1016/j.bspc.2021.103401

    Article  Google Scholar 

  51. Abualigah, L., Al-Okbi, N. K., Elaziz, M. A., & Houssein, E. H. (2022). Boosting marine predators algorithm by salp swarm algorithm for multilevel thresholding image segmentation. Multimedia Tools and Applications, 81, 16707–16742. https://doi.org/10.1007/s11042-022-12001-3

    Article  Google Scholar 

  52. Liu, L., Zhao, D., Yu, F., Heidari, A. A., Li, C., Ouyang, J., Chen, H., Mafarja, M., Turabieh, H., & Pan, J. (2021). Ant colony optimization with cauchy and greedy levy mutations for multilevel COVID 19 X-ray image segmentation. Computers in Biology and Medicine, 136, 104609. https://doi.org/10.1016/j.compbiomed.2021.104609

    Article  Google Scholar 

  53. Bhandari, A. K. (2020). A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation. Neural Computing and Applications, 32, 4583–4613. https://doi.org/10.1007/s00521-018-3771-z

    Article  Google Scholar 

  54. Wu, B., Zhou, J., Ji, X., Yin, Y., & Shen, X. (2020). An ameliorated teaching–learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Information Sciences, 533, 72–107. https://doi.org/10.1016/j.ins.2020.05.033

    Article  MathSciNet  MATH  Google Scholar 

  55. He, L., & Huang, S. (2020). An efficient krill herd algorithm for color image multilevel thresholding segmentation problem. Applied Soft Computing, 89, 106063. https://doi.org/10.1016/j.asoc.2020.106063

    Article  Google Scholar 

  56. Ren, L., Zhao, D., Zhao, X., Chen, W., Li, L., Wu, T., Liang, G., Cai, Z., & Xu, S. (2022). Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution. Computers in Biology and Medicine, 148, 105910. https://doi.org/10.1016/j.compbiomed.2022.105910

    Article  Google Scholar 

  57. Hosny, K. M., Khalid, A. M., Hamza, H. M., & Mirjalili, S. (2022). Multilevel segmentation of 2D and volumetric medical images using hybrid coronavirus optimization algorithm. Computers in Biology and Medicine, 150, 106003. https://doi.org/10.1016/j.compbiomed.2022.106003

    Article  Google Scholar 

  58. Wei, Z., Liu, L., Kuang, F., Li, L., Xu, S., & Liang, Y. (2022). An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer. Computers in Biology and Medicine, 151, 106227. https://doi.org/10.1016/j.compbiomed.2022.106227

    Article  Google Scholar 

  59. Emam, M. M., Houssein, E. H., & Ghoniem, R. M. (2023). A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images. Computers in Biology and Medicine, 152, 106404. https://doi.org/10.1016/j.compbiomed.2022.106404

    Article  Google Scholar 

  60. Han, Y., Chen, W., Heidari, A. A., & Chen, H. (2023). Multi-verse optimizer with rosenbrock and diffusion mechanisms for multilevel threshold image segmentation from COVID-19 chest X-Ray images. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-022-00295-w

    Article  Google Scholar 

  61. Xing, J., Zhao, H., Chen, H., Deng, R., & Xiao, L. (2023). Boosting whale optimizer with quasi-oppositional learning and gaussian barebone for feature selection and COVID-19 image segmentation. Journal of Bionic Engineering, 20, 797–818. https://doi.org/10.1007/s42235-022-00297-8

    Article  Google Scholar 

  62. Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Li, C., Nguyen, H., & Yagiz, S. (2021). Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Engineering Applications of Artificial Intelligence, 97, 104015. https://doi.org/10.1016/j.engappai.2020.104015

    Article  Google Scholar 

  63. Majdoubi, E. L., & O., Abdoun F., Abdoun O. (2021). A new optimized approach to resolve a combinatorial problem: CoronaVirus optimization algorithm and self-organizing maps. Digital Technologies and Applications, 211, 947–957. https://doi.org/10.1007/978-3-030-73882-2_86

    Article  Google Scholar 

  64. Seyyedabbasi, A., Aliyev, R., Kiani, F., Gulle, M. U., Basyildiz, H., & Shah, M. A. (2021). Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems. Knowledge-Based Systems, 223, 107044. https://doi.org/10.1016/j.knosys.2021.107044

    Article  Google Scholar 

  65. Yin, L., & Li, S. (2021). Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems. Engineering Applications of Artificial Intelligence, 104, 104326. https://doi.org/10.1016/j.engappai.2021.104326

    Article  MathSciNet  Google Scholar 

  66. Qu, C., Gai, W., Zhong, M., & Zhang, J. (2020). A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Applied Soft Computing, 89, 106099. https://doi.org/10.1016/j.asoc.2020.106099

    Article  Google Scholar 

  67. Zamfirache, I. A., Precup, R.-E., Roman, R.-C., & Petriu, E. M. (2022). Policy iteration reinforcement learning-based control using a grey wolf optimizer algorithm. Information Sciences, 585, 162–175. https://doi.org/10.1016/j.ins.2021.11.051

    Article  Google Scholar 

  68. Sadeg, S., Hamdad, L., Remache, A. R., Karech, M. N., Benatchba, K., & Habbas, Z. (2019). QBSO-FS: A reinforcement learning based bee swarm optimization metaheuristic for feature selection. Advances in Computational Intelligence, 11507, 785–796. https://doi.org/10.1007/978-3-030-20518-8_65

    Article  Google Scholar 

  69. Chen, R., Yang, B., Li, S., & Wang, S. (2020). A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem. Computers & Industrial Engineering, 149, 106778. https://doi.org/10.1016/j.cie.2020.106778

    Article  Google Scholar 

  70. Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44, 800–801.

    Article  Google Scholar 

  71. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  72. Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20, 2378–2386. https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

  73. Huang, R. (2008). Some inequalities for the hadamard product and the fan product of matrices. Linear Algebra and its Applications, 428, 1551–1559. https://doi.org/10.1016/j.laa.2007.10.001

    Article  MathSciNet  MATH  Google Scholar 

  74. Mantegna, R. N. (1994). Fast, accurate algorithm for numerical simulation of lévy stable stochastic processes. Physical Review E, 49, 4677–4683. https://doi.org/10.1103/PhysRevE.49.4677

    Article  Google Scholar 

  75. Sun, J., Gong, M., Zhao, Y., Han, C., Jing, L., & Yang, P. (2022). A hybrid deep reinforcement learning ensemble optimization model for heat load energy-saving prediction. Journal of Building Engineering, 58, 105031. https://doi.org/10.1016/j.jobe.2022.105031

    Article  Google Scholar 

  76. Dolcetta, I. C., & Ishii, H. (1984). Approximate solutions of the bellman equation of deterministic control theory. Applied Mathematics and Optimization, 11, 161–181. https://doi.org/10.1007/BF01442176

    Article  MathSciNet  MATH  Google Scholar 

  77. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, 9, 62–66.

    Google Scholar 

  78. Kapur, J. N., Sahoo, P. K., & Wong, A. K. C. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29, 273–285. https://doi.org/10.1016/0734-189X(85)90125-2

    Article  Google Scholar 

  79. Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., Xie, P. (2020). COVID-CT-dataset: A CT Scan dataset about COVID-19. arXiv preprint http://arxiv.org/abs/2003.13865

  80. Arcuri, A., & Fraser, G. (2013). Parameter tuning or default values? An empirical investigation in search-based software engineering. Empirical Software Engineering, 18, 594–623. https://doi.org/10.1007/s10664-013-9249-9

    Article  Google Scholar 

  81. Khorram, B., & Yazdi, M. (2019). A new optimized thresholding method using ant colony algorithm for MR brain image segmentation. Journal of Digital Imaging, 32, 162–174. https://doi.org/10.1007/s10278-018-0111-x

    Article  Google Scholar 

  82. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  83. Abdel-Basset, M., Chang, V., & Mohamed, R. (2021). A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems. Neural Computing and Applications, 33, 10685–10718. https://doi.org/10.1007/s00521-020-04820-y

    Article  Google Scholar 

  84. Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629. https://doi.org/10.1016/j.ins.2021.11.036

    Article  Google Scholar 

  85. Ewees, A. A., Abd Elaziz, M., Al-Qaness, M. A. A., Khalil, H. A., & Kim, S. (2020). Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation. IEEE Access, 8, 26304–26315. https://doi.org/10.1109/ACCESS.2020.2971249

    Article  Google Scholar 

  86. Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2020). Human mental search-based multilevel thresholding for image segmentation. Applied Soft Computing, 97, 105427. https://doi.org/10.1016/j.asoc.2019.04.002

    Article  Google Scholar 

  87. Kovesi, P. (2000). Phase congruency: A low-level image invariant. Psychological Research Psychologische Forschung, 64, 136–148. https://doi.org/10.1007/s004260000024

    Article  Google Scholar 

  88. Xue, W., Zhang, L., Mou, X., & Bovik, A. C. (2014). Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 23, 684–695. https://doi.org/10.1109/TIP.2013.2293423

    Article  MathSciNet  MATH  Google Scholar 

  89. Saary, M. J. (2008). Radar plots: A useful way for presenting multivariate health care data. Journal of Clinical Epidemiology, 61, 311–317. https://doi.org/10.1016/j.jclinepi.2007.04.021

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the National Natural Science Foundation of China [grant numbers 21466008]; the Guangxi Natural Science Foundation, China [grant numbers 2019GXNSFAA185017]; the Scientific Research Project of Guangxi Minzu University [grant numbers 2021MDKJ004]; and the Innovation Project of Guangxi Graduate Education [grant numbers YCSW2022255]. In addition, the authors would like to thank the anonymous reviewers for providing their valuable insights that could improve the quality of this study.

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 21466008]; the Guangxi Natural Science Foundation, China [grant numbers 2019GXNSFAA185017]; the Scientific Research Project of Guangxi Minzu University [grant numbers 2021MDKJ004]; and the Innovation Project of Guangxi Graduate Education [grant numbers YCSW2022255].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology, validation, formal analysis and coding were performed by ZW. Review, editing and supervision were performed by YM. Writing and editing were performed by MC. The first draft of the manuscript was written by ZW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuanbin Mo.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Mo, Y. & Cui, M. An Efficient Multilevel Threshold Image Segmentation Method for COVID-19 Imaging Using Q-Learning Based Golden Jackal Optimization. J Bionic Eng 20, 2276–2316 (2023). https://doi.org/10.1007/s42235-023-00391-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00391-5

Keywords

Navigation