Skip to main content
Log in

Snake-worm: A Bi-modal Locomotion Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Inspired by the morphology characteristics and the locomotion mechanisms of the earthworm, and the snakes’ morphology characteristics and motivated by the demands for multi-modal locomotion robots in variable working environments, this paper presents a novel bi-modal robot named as Snake-Worm Locomotion Robot (SWL-Robot). Two fundamentally different locomotion mechanisms, the earthworm’s peristaltic rectilinear locomotion and the snake’s lateral undulation, are synthesized in the SWL-Robot design. In detail, the SWL-Robot consists of six earthworm-like body segments interconnected by rotational joints and a head segment equipped with a couple of independently driven wheels. By actuating the segments following a peristaltic wave-like gait, the robot as a whole could perform earthworm-like rectilinear crawling. The robot could also perform snake-like undulatory locomotion driven by differential motions of the wheels at the head segment. To understand the relationship between the design parameters and the robotic locomotion performance, kinematic models of the SWL-Robot corresponding to the two locomotion modes are developed. Rich locomotion behaviors of the SWL-Robot are achieved, including the peristaltic locomotion inside a tube, multiple planar motions on a flat surface, and a hybrid motion that switches between the tube and the flat surface. It shows that the measured trajectories of the SWL-Robot agree well with the theoretical predictions. The SWL-Robot is promising to be implemented in tasks where both tubular and flat environments may be encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available from the corresponding author on reasonable request.

References

  1. Becker, F., Boerner, S., Lysenko, V., Zeidis, I., & Zimmermann, K. (2014). On the mechanics of bristle-bots-modeling, simulation and experiments.In ISR/Robotik 2014; 41st International symposium on robotics, Munich, Germany, pp. 1–6.

  2. Boxerbaum, A. S., Shaw, K. M., Chiel, H. J., & Quinn, R. D. (2012). Continuous wave peristaltic motion in a robot. The International Journal of Robotics Research, 31, 302–318.

    Article  Google Scholar 

  3. Calabrese, L., Berardo, A., De Rossi, D., Gei, M., Pugno, N. M., & Fantoni, G. (2019). A soft robot structure with limbless resonant, stick and slip locomotion. Smart Materials and Structures, 28, 104005.

    Article  Google Scholar 

  4. Calderón, A. A., Ugalde, J. C., Chang, L., Zagal, J. C., & Pérez-Arancibia, N. O. (2019). An earthworm-inspired soft robot with perceptive artificial skin. Bioinspiration and Biomimetics, 14, 056012.

    Article  Google Scholar 

  5. Castano, A., Shen, W. M., & Will, P. (2000). CONRO: Towards deployable robots with inter-robots metamorphic capabilities. Autonomous Robots, 8, 309–324.

    Article  Google Scholar 

  6. Chen, Y. F., Wang, H. Q., Helbling, E. F., Jafferis, N. T., Zufferey, R., Ong, A., Ma, K., Gravish, N., Chirarattananon, P., Kovac, M., & Wood, R. J. (2017). A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2, aao5619.

    Article  Google Scholar 

  7. Joey, Z. G., Calderón, A. A., Chang, L., & Pérez-Arancibia, N. O. (2019). An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion. Bioinspiration and Biomimetics, 14, 036004.

    Article  Google Scholar 

  8. Craft, T. J., Edmondson, M. I., & Agee, R. (1958). A comparative study of the mechanics of flying and swimming in some common brown bats. The Ohio Journal of Science, 58, 245–249.

    Google Scholar 

  9. Crespi, A., Badertscher, A., Guignard, A., & Ijspeert, A. J. (2005). AmphiBot I: An amphibious snake-like robot. Robotics and Autonomous Systems, 50, 163–175.

    Article  Google Scholar 

  10. Crespi, A., & Ijspeert, A. J. (2008). Online optimization of swimming and crawling in an amphibious snake robot. IEEE Transactions on Robotics, 24, 75–87.

    Article  Google Scholar 

  11. Dario, P., Ciarletta, P., Menciassi, A., & Kim, B. (2004). Modeling and experimental validation of the locomotion of endoscopic robots in the colon. The International Journal of Robotics Research, 23, 549–556.

    Article  Google Scholar 

  12. Fang, H. B., Li, S. Y., Wang, K. W., & Xu, J. (2015). Phase coordination and phase–velocity relationship in metameric robot locomotion. Bioinspiration and Biomimetics, 10, 066006.

    Article  Google Scholar 

  13. Fang, H. B., Wang, C. H., Li, S. Y., Wang, K. W., & Xu, J. (2015). A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot. Multibody System Dynamics, 35, 153–177.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang, H. B., Wang, C. H., Li, S. Y., Xu, J., & Wang, K. W. (2014). Design and experimental gait analysis of a multi-segment in-pipe robot inspired by earthworm’s peristaltic locomotion. Bioinspiration, Biomimetics, and Bioreplication, 9055, 90550H.

    Google Scholar 

  15. Lee, K. M., Kim, Y., Paik, J. K., & Shin, B. (2015). Clawed miniature inchworm robot driven by electromagnetic oscillatory actuator. Journal of Bionic Engineering, 12, 519–526.

    Article  Google Scholar 

  16. Yu, M., Yang, W. M., Yu, Y., Cheng, X., & Jiao, Z. W. (2020). A crawling soft robot driven by pneumatic foldable actuators based on Miura-ori. Actuators, 9, 26.

    Article  Google Scholar 

  17. Fish, F. E. (1990). Wing design and scaling of flying fish with regard to flight performance. Journal of Zoology, 221, 391–403.

    Article  Google Scholar 

  18. Harigaya, K., Adachi, K., Yanagida, T., Yokojima, M., & Nakamura, T. (2013). Development of a peristaltic crawling robot for sewer pipe inspection. In 2013 IEEE international conference on mechatronics, Vicenza, Italy, pp. 267–272.

  19. Song, C. W., Lee, D. J., & Lee, S. Y. (2016). Bioinspired segment robot with earthworm-like plane locomotion. Journal of Bionic Engineering, 13, 292–302.

    Article  Google Scholar 

  20. Hirose, S., Morishima, A., Tukagosi, S., Tsumaki, T., & Monobe, H. (1991). Design of practical snake vehicle: Articulated body mobile robot KR-II. In Fifth International conference on advanced robotics’ robots in unstructured environment, Pisa, Italy, pp. 833–838.

  21. Hopkins, J. K., Spranklin, B. W., & Gupta, S. K. (2009). A survey of snake-inspired robot designs. Bioinspiration and Biomimetics, 4, 021001.

    Article  Google Scholar 

  22. Hu, W. Q., Lum, G. Z., Mastrangeli, M., & Sitti, M. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554, 81–85.

    Article  Google Scholar 

  23. Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21, 642–653.

    Article  Google Scholar 

  24. Isaac, L. A., & Gregory, P. T. (2007). Aquatic versus terrestrial locomotion: Comparative performance of two ecologically contrasting species of European natricine snakes. Journal of Zoology, 273, 56–62.

    Article  Google Scholar 

  25. Jafari, F., Ross, S. D., Vlachos, P. P., & Socha, J. J. (2014). A theoretical analysis of pitch stability during gliding in flying snakes. Bioinspiration and Biomimetics, 9, 025014.

    Article  Google Scholar 

  26. Jeevanantham, P., & Stephen, J. D. G. (2018). Dynamic optimization of snake robot with environment detection and analysis. IOP Conference Series: Materials Science and Engineering, 402, 012019.

    Article  Google Scholar 

  27. Jiang, Z. W., & Xu, J. (2017). Analysis of worm-like locomotion driven by the sine-squared strain wave in a linear viscous medium. Mechanics Research Communications, 85, 33–44.

    Article  Google Scholar 

  28. Kimura, H., & Hirose, S. (2002). Development of Genbu: Active wheel passive joint articulated mobile robot. In IEEE/RSJ international conference on intelligent robots and systems, Lausanne, Switzerland, pp. 823–828.

  29. Klaassen, B., & Paap, K. L. (1999). GMD-SNAKE2: a snake-like robot driven by wheels and a method for motion control. In Proceedings 1999 IEEE international conference on robotics and automation (Cat. No.99CH36288C), Detroit, MI, USA, pp. 3014–3019.

  30. Kyriakopoulos, K. J., Migadis, G., & Sarrigeorgidis, K. (1999). The NTUA snake: Design, planar kinematics, and motion planning. Journal of Robotic Systems, 16, 37–72.

    Article  MATH  Google Scholar 

  31. Gray, J., & Lissmann, H. W. (1950). The kinetics of locomotion of the grass-snake. Journal of Experimental Biology, 26, 354–367.

    Article  Google Scholar 

  32. Lock, R. J., Burgess, S. C., & Vaidyanathan, R. (2013). Multi-modal locomotion: from animal to application. Bioinspiration and Biomimetics, 9, 011001.

    Article  Google Scholar 

  33. Mangan, E. V., Kingsley, D. A., Quinn, R. D., & Chiel, H. J. (2002). Development of a peristaltic endoscope. In Proceedings 2002 IEEE international conference on robotics and automation (Cat. No.02CH37292), Washington, DC, USA, pp. 347–352.

  34. Menciassi, A., Gorini, S., Pernorio, G., & Dario, P. (2004). A SMA actuated artificial earthworm. In IEEE international conference on robotics and automation, New Orleans, LA, USA, pp. 3282–3287.

  35. Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R., & Rus, D. (2015). An untethered miniature origami robot that self-folds, walks, swims, and degrades. In 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA, USA, pp. 1490–1496.

  36. Mori, M., & Hirose, S. (2001). Development of active cord mechanism ACM-R3 with agile 3D mobility. In Proceedings 2001 IEEE/RSJ international conference on intelligent robots and systems. Expanding the societal role of robotics in the next millennium (Cat. No. 01CH37180), Maui, HI, USA, pp. 1552–1557.

  37. Mori, M., & Hirose, S. (2002). Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3. In IEEE/RSJ international conference on intelligent robots and systems, Lausanne, Switzerland, pp. 829–834.

  38. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics, 7, 431–441.

    Article  Google Scholar 

  39. Ohno, H., & Hirose, S. (2001). Design of slim slime robot and its gait of locomotion. In Proceedings 2001 IEEE/RSJ international conference on intelligent robots and systems. Expanding the societal role of robotics in the next millennium (Cat. No. 01CH37180), Maui, HI, USA, pp. 707–715.

  40. Omori, H., Nakamura, T., & Yada, T. (2009). An underground explorer robot based on peristaltic crawling of earthworms. Industrial Robot: An International Journal, 36, 358–364.

    Article  Google Scholar 

  41. Onal, C. D., & Rus, D. (2013). Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration and Biomimetics, 8, 026003.

    Article  Google Scholar 

  42. Koopaee, M. J., Bal, S., Pretty, C., & Chen, X. Q. (2019). Design and development of a wheel-less snake robot with active stiffness control for adaptive pedal wave locomotion. Journal of Bionic Engineering, 16, 593–607.

    Article  Google Scholar 

  43. Matsuo, T., Yokoyama, T., Ueno, D., & Ishii, K. (2008). Biomimetic motion control system based on a CPG for an amphibious multi-link mobile robot. Journal of Bionic Engineering, 5, 91–97.

    Article  Google Scholar 

  44. Yaqub, S., Ali, A., Usman, M., Zuhaib, K. M., Khan, A. M., An, B., Moon, H., Lee, J. Y., & Han, C. (2019). A spiral curve gait design for a modular snake robot moving on a pipe. International Journal of Control, Automation and Systems, 17, 2565–2573.

    Article  Google Scholar 

  45. Saga, N., & Nakamura, T. (2004). Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm. Smart Materials and Structures, 13, 566.

    Article  Google Scholar 

  46. Saito, T., Kagiwada, T., & Harada, H. (2009). Development of an earthworm robot with a shape memory alloy and braided tube. Advanced Robotics, 23, 1743–1760.

    Article  Google Scholar 

  47. Schulke, M., Hartmann, L., & Behn, C. (2011). Worm-like locomotion systems: development of drives and selective anisotropic friction structures. In International scientific colloquium, Thuringia, Germany, pp. 12–16.

  48. Seok, S., Onal, C. D., Cho, K. J., Wood, R. J., Rus, D., & Kim, S. (2012). Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Transactions on Mechatronics, 18, 1485–1497.

    Article  Google Scholar 

  49. Seok, S., Onal, C. D., Wood, R., Rus, D., & Kim, S. (2010). Peristaltic locomotion with antagonistic actuators in soft robotics. In IEEE international conference on robotics and automation, Anchorage, AK, USA, pp. 1228–1233.

  50. Socha, J. J. (2014). Of snakes and robots. Science, 346, 160–161.

    Article  Google Scholar 

  51. Yamada, H., & Hirose, S. (2006). Development of practical 3-dimensional active cord mechanism ACM-R4. Journal of Robotics and Mechatronics, 18, 305–311.

    Article  Google Scholar 

  52. Peterson, K., Birkmeyer, P., Dudley, R., & Fearing, R. S. (2011). A wing-assisted running robot and implications for avian flight evolution. Bioinspiration and Biomimetics, 6, 046008.

    Article  Google Scholar 

  53. Zarrouk, D., Sharf, I., & Shoham, M. (2016). Energetic analysis and experiments of earthworm-like locomotion with compliant surfaces. Bioinspiration and Biomimetics, 11, 014001.

    Article  Google Scholar 

  54. Zhakypov, Z., Falahi, M., Shah, M., & Paik, J. (2015). The design and control of the multi-modal locomotion origami robot, Tribot. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), Hamburg, Germany, pp. 4349–4355.

  55. Zhan, X., Fang, H. B., Xu, J., & Wang, K. W. (2019). Planar locomotion of earthworm-like metameric robots. The International Journal of Robotics Research, 38, 1751–1774.

    Article  Google Scholar 

  56. Zuo, J., Yan, G., & Gao, Z. (2005). A micro creeping robot for colonoscopy based on the earthworm. Journal of Medical Engineering and Technology, 29, 1–7.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant no. 11932015 and the Major Research Plan of the National Natural Science Foundation of China under Grant no. 91748203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Fang, H. & Xu, J. Snake-worm: A Bi-modal Locomotion Robot. J Bionic Eng 19, 1272–1287 (2022). https://doi.org/10.1007/s42235-022-00197-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00197-x

Keywords

Navigation