Skip to main content
Log in

3D-Printed Bio-inspired Multi-channel Cathodes for Zinc–air Battery Applications

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

It is of great significance to enhance mass transfer and improve active surface area in cathodes for zinc–air batteries (ZABs), which promote oxygen reduction reaction (ORR) efficiency and power outputs. Nature has endowed some tissues with special structures to have efficient mass transfer properties and high active surface area. As an important mass transfer part of trees, xylem contains massive long and partially aligned channels, which provides numerous “passageway” and high active surface area for plants to facilitate the efficient transport of oxygen and inorganic salts. The multi-channel structures give an important insight to develop high efficient air cathode. Herein, 3D-printed bio-inspired multi-channel cathodes (BMCs), inspired by xylem structures, have been developed for high-performance ZABs via 3D printing. Channels of bionic cathode contribute to forming a continuous supply of oxygen from air. As a result, massive tri-phase boundary regions, where ORR happens, are formed inside of cathode. Moreover, the 3D-printed metal-based framework can facilitate electron transfer during ORR process. Benefiting from the multi-channel framework, the assembled ZABs with BMC-600 show excellent electrochemical performances in terms of the high power density of 170.1 mW cm−2 and a high open-circuit voltage of 1.51 V. Therefore, BMCs provide a potential alternative as promising cathode for metal–air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414, 345–352.

    Article  Google Scholar 

  2. Xia, W., Mahmood, A., Liang, Z. B., Zou, R. Q., & Guo, S. J. (2016). Earth-abundant nanomaterials for oxygen reduction. Angewandte Chemie International Edition, 18, 2650–2676.

    Article  Google Scholar 

  3. Li, Y., & Dai, H. (2014). Recent advances in zinc–air batteries. Chemical Society Reviews, 43, 5257–5275.

    Article  Google Scholar 

  4. Wang, S. Y., Chen, S. M., Ma, L. T., & Zapien, J. A. (2021). Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air batteries applications. Materials Today Energy, 20, 100659–110689.

    Article  Google Scholar 

  5. Masa, J., Xia, W., Muhler, M., & Schuhmann, W. (2015). On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angewandte Chemie International Edition, 54, 10102–10120.

    Article  Google Scholar 

  6. Nørskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., & Jónsson, H. (2004). Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 108, 17886–17892.

    Article  Google Scholar 

  7. Wu, G., More, K. L., Johnston, C., & Zelenay, P. (2011). High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 332, 443–447.

    Article  Google Scholar 

  8. Greeley, J., Stephens, I. E. L., Bondarenko, A. S., Johansson, T. P., Hansen, H. A., Jaramillo, T. F., Rossmeisl, J., Chorkendorff, I., & Nørskov, J. K. (2009). Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 1, 552–556.

    Article  Google Scholar 

  9. Zhu, A. Q., Qiao, L. L., Tan, P. F., Ma, Y. J., Zeng, W. X., Dong, R., Ma, C., & Pan, J. (2019). Iron-nitrogen-carbon species for oxygen electro-reduction and Zn–air battery: Surface engineering and experimental probe into active sites. Applied Catalysis B: Environmental, 254, 601–611.

    Article  Google Scholar 

  10. Zhang, F., Saito, T., Cheng, S. A., Hickner, M. A., & Logan, B. E. (2010). Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology, 44, 1490–1495.

    Article  Google Scholar 

  11. Wang, Y., Kong, A. G., Chen, X. T., Lin, Q. P., & Feng, P. Y. (2015). Efficient oxygen electroreduction: Hierarchical porous Fe-N-doped hollow carbon nanoshells. ACS Catalysis, 5, 3887–3893.

    Article  Google Scholar 

  12. Yao, Y. F., You, Y., Zhang, G. X., Liu, J. G., Sun, H. R., Zou, Z. G., & Sun, S. H. (2016). Highly functional bioinspired Fe/N/C oxygen reduction reaction catalysts: Structure-regulating oxygen sorption. ACS Applied Materials & Interfaces, 8, 6464–6471.

    Article  Google Scholar 

  13. Berlyn, G. P. (1983). Plant structures: Xylem structure and the ascent of sap. Science, 222, 500–501.

    Article  Google Scholar 

  14. Tyree, M. T., & Zimmermann, M. (2002). H. Xylem structure and the ascent of sap. Springer.

    Book  Google Scholar 

  15. Aleksandra, S., Alicja, D., & Katarzyna, S. (2021). Xylem parenchyma-role and relevance in wood functioning in trees. Plants, 10, 1247–1271.

    Article  Google Scholar 

  16. Craig, R. B., Adam, B. R., Jay, W. W., & Andrew, J. M. (2019). Functional status of xylem through time. Annual Review of Plant Biology, 70, 407–433.

    Article  Google Scholar 

  17. Shen, F., Luo, W., Dai, J. Q., Yao, Y. G., Zhu, M. W., Emily, H., Tang, Y. F., Chen, Y. F., Sprenkle, V. L., Li, X. L., & Hu, L. B. (2016). Ultra-thick, low-t ortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. ACS Applied Energy Materials, 6, 1600377–1600383.

    Google Scholar 

  18. Yang, Y., Sun, X., Cheng, Z., Alolika, M., Avi, N., Liu, C., Cao, D. X., & Zhu, H. L. (2020). Functionalized well-aligned channels derived from wood as a convection-enhanced electrode for aqueous flow batteries. ACS Applied Energy Materials, 3, 6249–6257.

    Article  Google Scholar 

  19. Song, H. Y., Xu, S. M., Li, Y. J., Dai, J. Q., Gong, A., Zhu, M. W., Zhu, C. L., Chen, C. J., Chen, Y. N., Yao, Y. G., Liu, B. Y., Song, J. W., Pastel, G., & Hu, L. B. (2018). Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. ACS Applied Energy Materials, 8, 1701203–1701210.

    Google Scholar 

  20. Lyu, L. L., Seong, K. D., Ko, D. J., Choi, J. Y., Lee, C. D., Hwang, T. J., Cho, Y. S., Jin, X. Z., Zhang, W., Pang, H., & Piao, Y. Z. (2019). Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers, 3, 2543–2570.

    Article  Google Scholar 

  21. Sun, J. M., Wu, Z. W., Ma, C. H., Xu, M. C., Luo, S., Li, W., & Liu, S. X. (2021). Biomass-derived tubular carbon materials: Progress in synthesis and applications. Journal of Materials Chemistry A, 9, 13822–13850.

    Article  Google Scholar 

  22. Gannon, P. E., Tripp, C. T., Knospe, A. K., Ramana, C. V., Deibert, M., Smith, R. J., Gorokhovsky, V. I., Shutthanandan, V., & Gelles, D. (2004). High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr-Al-N multilayer and/or superlattice coatings. Surface & Coatings Technology, 188, 55–61.

    Article  Google Scholar 

  23. Celiktas, M. S., & Alptekin, F. M. (2019). Conversion of model biomass to carbon-based material with high conductivity by using carbonization. Energy, 188, 116089–116099.

    Article  Google Scholar 

  24. Berman, B. (2013). 3D printing: The new industrial revolution. IEEE Engineering Management Review, 41, 72–80.

    Article  Google Scholar 

  25. Lipson, H. (2013). Fabricated: The new world of 3D printing. Wiley publishing.

    Google Scholar 

  26. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86, 3240–3253.

    Article  Google Scholar 

  27. Zhang, J., Li, X. L., Fan, S., Huang, S. Z., Yan, D., Liu, L., Pablo, V. Y. A., & Yang, H. Y. (2020). 3D-printed functional electrodes towards Zn–Air batteries. Materials Today Energy, 16, 100407–100412.

    Article  Google Scholar 

  28. Wei, C. H., Tian, M., Wang, M. L., Shi, Z. X., Yu, L. H., Li, S., Fan, Z. D., Yang, R. Z., & Sun, J. Y. (2020). Universal in situ crafted MOx-mxene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano, 14, 16073–16084.

    Article  Google Scholar 

  29. Fan, Z. D., Jin, J., Li, C., Cai, J. S., Wei, C. H., Shao, Y. L., Zou, G. F., & Sun, J. Y. (2021). 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 mxene ink. ACS Nano, 15, 3098–3107.

    Article  Google Scholar 

  30. Guo, T. Q., Song, Y. Z., Sun, Z. T., Wu, Y. H., Xia, Y., Li, Y. Y., Sun, J. H., Jiang, K., Dou, S. X., & Sun, J. Y. (2020). Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries. Journal of Energy Chemistry, 42, 34–42.

    Article  Google Scholar 

  31. Ye, G. Y., He, Q., Liu, S. Q., Zhao, K. M., Su, Y. K., Zhu, W. W., Huang, R. J., & He, Z. (2019). Cage-confinement of gas-phase ferrocene in zeolitic imidazolate frameworks to synthesize high-loading and atomically dispersed Fe–N codoped carbon for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 7, 16508–16515.

    Article  Google Scholar 

  32. Yuan, K., Lu, C. B., Sfaelou, S., Liao, X. X., Zhuang, X. D., Chen, Y. W., Scherf, U., & Feng, X. L. (2019). In situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy, 59, 207–215.

    Article  Google Scholar 

  33. Shou, D. H., & Fan, J. T. (2018). Design of nanofibrous and microfibrous channels for fast capillary flow. Langmuir the ACS Journal of Surfaces & Colloids, 34, 1235–1241.

    Article  Google Scholar 

  34. Andersson, J., Ström, A., Gebäck, T., & Larsson, A. (2017). Dynamics of capillary transport in semi-solid channels. Soft Matter, 13, 2562–2570.

    Article  Google Scholar 

  35. Sekhon, S. S., & Park, J. S. (2021). Biomass-derived N-doped porous carbon nanosheets for energy technologies. Chemical Engineering Journal, 425, 129017–129035.

    Article  Google Scholar 

  36. Titirici, M. M., White, R. J., Falco, C., & Sevilla, M. (2012). Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science, 5, 6796–6822.

    Article  Google Scholar 

  37. Kanaan, A., Mazloum, A., & Sevostianov, L. (2016). On the connections between plasticity parameters and electrical conductivities for austenitic, ferritic, and semi-austenitic stainless steels. International Journal of Engineering Science, 105, 28–37.

    Article  Google Scholar 

  38. Han, J. X., Meng, X. Y., Lu, L., Bian, J. J., Li, Z. P., & Sun, C. W. (2019). Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc-air batteries. Advanced Functional Materials, 29, 1808872–1808879.

    Article  Google Scholar 

  39. Sheng, S. Y., Shi, B. R., Wang, C., Luo, L., Lin, X., Li, P. S., Chen, F. H., Shang, Z. C., Meng, H., Kuang, Y., Lin, W. F., & Sun, X. L. (2020). Anti-buoyancy and unidirectional gas evolution by janus electrodes with asymmetric wettability. ACS Applied Materials & Interfaces, 12, 23627–23634.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51975245 and 52075214), Jilin Provincial Science & Technology Department (20200201058JC, 20190303039SF and 20200201224JC), Department of Jilin Provincial Education (JKH20210884KJ), Key Science and Technology R&D Projects of Jilin Province (2020C023-3), Program of Jilin University Science and Technology Innovative Research Team (2020TD-03), and Youth Development Program of Jilin University (2020-JCXK-22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenning Liu or Guolong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 662 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, X., Li, Z., Yang, W. et al. 3D-Printed Bio-inspired Multi-channel Cathodes for Zinc–air Battery Applications. J Bionic Eng 19, 1014–1023 (2022). https://doi.org/10.1007/s42235-022-00173-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00173-5

Keywords

Navigation