Skip to main content
Log in

Bending Resistance and Anisotropy of Basalt Fibers Laminate Composite with Bionic Helical Structure

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The appendages of mantis shrimp often bear bending loads from different directions during the in the process of preying on prey with its grazing limb. Hence, it has excellent bending resistance and isotropy to confront complex and changeable external load. The outstanding performance owes to the helical Bouligand structure with a certain interlayer corner, which is also widely found in other natural materials. Hence, the bio-inspired materials with basalt fiber are fabricated with outstanding bending resistance, isotropy and toughness. The research shows laminates with 18° interlayer corners exhibit relatively excellent bending resistance and isotropy, and the laminate with 11.25° interlayer corner has best toughness. Compared with traditional composites, average bending strength along different loading direction of bio-inspired materials increased by 28%, and anisotropy decreased by 86%. Besides, the maximum toughness of laminates can increase to 1.7 times of the original. Following the introduction of interlayer corners, the bio-inspired composite tends to be isotropic. To explore the reason for the change of the isotropic performance caused by diverse interlayer corners, the Finite Element Analysis based on classical laminate theory and Tsai–Wu and Tsai–Hill failure criterion. Besides, further experiments and observations are conducted to explore possible reasons. In conclusion, following the introduction of interlayer corners, the bio-inspired composites tend to be isotropic. This bio-inspired composites are expected to be applied to various complex modern engineering fields, such as vehicle, rail transit and aerospace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dhand, V., Mittal, G., Rhee, K. Y., Park, S. J., & Hui, D. (2015). A short review on basalt fiber reinforced polymer composites. Composites. Part B, Engineering, 73, 166–180.

    Article  Google Scholar 

  2. Fiore, V., Scalici, T., Di Bella, G., & Valenza, A. (2015). A review on basalt fibre and its composites. Composites. Part B, Engineering, 74, 74–94.

    Article  Google Scholar 

  3. Sim, J., Park, C., & Moon, D. Y. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites. Part B, Engineering, 36, 504–512.

    Article  Google Scholar 

  4. Xing, D., Xi, X. Y., & Ma, P. C. (2019). Factors governing the tensile strength of basalt fibre. Composites. Part A, Applied Science and Manufacturing, 119, 127–133.

    Article  Google Scholar 

  5. Xu, X. F., Rawat, P., Shi, Y. C., & Zhu, D. J. (2019). Tensile mechanical properties of basalt fiber reinforced polymer tendons at low to intermediate strain rates. Composites. Part B, Engineering, 177, 107442.

    Article  Google Scholar 

  6. Meyers, M. A., McKittrick, J., & Chen, P. Y. (2013). Structural biological materials: critical mechanics-materials connections. Science, 339, 773–779.

    Article  Google Scholar 

  7. Zhao, N., Wang, Z., Cai, C., Shen, H., Liang, F. Y., Wang, D., Wang, C. Y., Zhu, T., Guo, J., Wang, Y. X., Liu, X. F., Duan, C. T., Wang, H., Mao, Y. Z., Jia, X., Dong, H. X., Zhang, X. L., & Xu, J. (2014). Bioinspired materials: from low to high dimensional structure. Advanced Materials, 26, 6994–7017.

    Article  Google Scholar 

  8. Liu, Z. Q., Meyers, M. A., Zhang, Z., & Ritchie, R. O. (2017). Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Progress Mater. Sci., 88, 467–498.

    Article  Google Scholar 

  9. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature Materials, 14, 23–36.

    Article  Google Scholar 

  10. Tadayon, M., Amini, S., Masic, A., & Miserez, A. (2015). The mantis shrimp saddle: a biological spring combining stiffness and flexibility. Advanced Functional Materials, 25, 6437–6447.

    Article  Google Scholar 

  11. Amini, S., Tadayon, M., Idapalapati, S., & Miserez, A. (2015). The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nature Materials, 25, 6437–6447.

    Google Scholar 

  12. Amini, S., Masic, A., Bertinetti, L., Teguh, J. S., Herrin, J. S., Zhu, X., Su, H. B., & Miserez, A. (2014). Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nature Communications, 5, 3187.

    Article  Google Scholar 

  13. Weaver, J. C., Milliron, G. W., Miserez, A., Evans-lutterodt, K., Herrera, S., Gallana, I., Mershon, W. J., Swanson, B., Zavattieri, P., DiMasi, E., & Kisailus, D. (2012). The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science, 336, 1275–1281.

    Article  Google Scholar 

  14. Yaraghi, N. A., Guarín-zapata, N., Grunenfelder, L. K., Hintsala, E., Bhowmick, S., Hiller, J. M., Betts, M., Principe, E. L., Jung, J. Y., Sheppard, L., Wuhrer, R., McKittrick, J., Zavattieri, P. D., & Kisailus, D. (2016). A sinusoidally architected helicoidal biocomposite. Advanced Materials, 28, 6835–6844.

    Article  Google Scholar 

  15. Grunenfelder, L. K., Milliron, G., Herrera, S., Gallana, I., Yaraghi, N., Hughes, N., Evans-Lutterodt, K., Zavattieri, K., & Kisailus, D. (2018). Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles. Advanced Materials, 30, 1705295.

    Article  Google Scholar 

  16. Chen, P. Y., Lin, A. Y., Mckittrick, J., & Andre, M. (2008). Structure and mechanical properties of crab exoskeletons. Acta Biomaterial., 4, 587–596.

    Article  Google Scholar 

  17. Boßelmann, F., Romano, P., Fabritius, H., Raabe, D., & Epple, M. (2007). The composition of the exoskeleton of two crustacea: the American lobster homarus americanus and the edible crab cancer pagurus. Thermochimica Acta, 463, 65–68.

    Article  Google Scholar 

  18. Lin, Y. S., Wei, C. T., Olevsky, E. A., & Meyers, M. A. (2011). Mechanical properties and the laminate structure of arapaima gigas scales. Journal of the Mechanical Behavior of Biomedical Materials, 4, 1145–1156.

    Article  Google Scholar 

  19. Zimmermann, E. A., Gludovatz, B., Schaible, E., Dave, N. K. N., Yang, W., Meyers, M. A., & Ritchie, R. O. (2013). Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nature Communications, 4, 2634.

    Article  Google Scholar 

  20. Yang, W., Sherman, V. R., Gludovatz, B., Mackey, M., Zimmermann, E. A., Chang, E. H., Schaible, E., Zhao, Q., Buehler, M. J., Ritchie, R. O., & Meyers, M. A. (2014). Protective role of arapaima gigas fish scales: structure and mechanical behavior. Acta Biomaterialia, 10, 3599–3614.

    Article  Google Scholar 

  21. Fabritius, B. H., Sachs, C., Triguero, P. R., & Raabe, D. (2009). Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus. Advanced Materials, 21, 391–400.

    Article  Google Scholar 

  22. Nikolov, S., Petrov, M., Lymperakis, L., Fria, M., Sachs, C., Fabritius, H. O., Raabe, D., & Neugebauer, J. (2010). Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of lobster cuticle. Advanced Materials, 22, 519–526.

    Article  Google Scholar 

  23. Yin, S., Yang, W., Kwon, J., Wat, A., Meyers, M. A., & Ritchie, R. O. (2019). Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials. Journal of the Mechanics and Physics of Solids, 131, 204–220.

    Article  MathSciNet  Google Scholar 

  24. Suksangpanya, N., Yaraghi, N. A., Kisailus, D., & Zavattieri, P. (2017). Twisting cracks in Bouligand structures. J. Mech. Behav. Biomed. Materials, 76, 38–57.

    Article  Google Scholar 

  25. Ha, N. S., & Lu, G. (2020). A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites. Part B, Engineering, 181, 107496.

    Article  Google Scholar 

  26. Yang, Y., Chen, Z. Y., Song, X., Zhang, Z. F., Zhang, J., Shung, K. K., Zhou, Q. F., & Chen, Y. (2017). Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Advanced Materials, 29, 1605750.

    Article  Google Scholar 

  27. Gantenbein, S., Masania, K., Woigk, W., Sesseg, J. P. W., Tervoort, T. A., & Studart, A. R. (2018). Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature, 561, 226–230.

    Article  Google Scholar 

  28. Chen, S. M., Gao, H. L., Zhu, Y. B., Yao, H. B., Mao, L. B., Song, Q. Y., Xia, J., Zhao, P., Zhen, H., Wu, H. A., & Yu, S. H. (2018). Biomimetic twisted plywood structural materials. National Science Review, 5, 703–714.

    Article  Google Scholar 

  29. Mencattelli, L., & Pinho, S. T. (2019). Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage. Composites Science and Technology, 182, 107684.

    Article  Google Scholar 

  30. Cheng, L., Thomas, A., Glancey, J. L., & Karlsson, A. M. (2011). Mechanical behavior of bio-inspired laminated composites. Composites. Part A, Applied Science and Manufacturing, 42, 211–220.

    Article  Google Scholar 

  31. Ginzburg, D., Pinto, F., Iervolino, O., & Meo, M. (2017). Damage tolerance of bio-inspired helicoidal composites under low velocity impact. Composite Structures, 161, 187–203.

    Article  Google Scholar 

  32. Mencattelli, L., & Pinho, S. T. (2020). Ultra-thin-ply CFRP Bouligand bio-inspired structures with enhanced load-bearing capacity, delayed catastrophic failure and high energy dissipation capability. Composites. Part A, Applied Science and Manufacturing, 129, 105655.

    Article  Google Scholar 

  33. Abir, M. R., Tay, T. E., & Lee, H. P. (2019). On the improved ballistic performance of bio-inspired composites. Composites. Part A, Applied Science and Manufacturing, 123, 59–70.

    Article  Google Scholar 

  34. Mencattelli, L., & Pinho, S. T. (2020). Herringbone–Bouligand CFRP structures: a new tailorable damage-tolerant solution for damage containment and reduced delaminations. Composites Science and Technology, 190, 108047.

    Article  Google Scholar 

  35. Han, Q. G., Shi, S. Q., Liu, Z. H., Han, Z. W., Niu, S. C., Zhang, J. Q., Qin, H. L., Sun, Y. B., & Wang, J. H. (2020). Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp. Composites. Part B, Engineering, 191, 107976.

    Article  Google Scholar 

  36. Liu, P., Duan, H. G., Van, L. L., Ye, T., & Bui, T. Q. (2019). Buckling of stomatopod-dactyl-club-inspired functional gradient plates: a numerical study. Composite Structures, 207, 801–815.

    Article  Google Scholar 

  37. Yang, R. G., Zaheri, A., Gao, W., Hayashi, C., & Espinosa, H. D. (2017). AFM Identification of beetle exocuticle: Bouligand Structure and nanofiber anisotropic elastic properties. Advanced Functional Materials, 27, 1603993.

    Article  Google Scholar 

  38. Greenfeld, I., Kellersztein, I., & Wagner, H. D. (2020). Nested helicoids in biological microstructures. Nature Communications, 11, 224.

    Article  Google Scholar 

  39. Daniel, I. M., & Ishai, O. (2006). Engineering Mechanics of Composite Materials. New York: Oxford University Press.

    Google Scholar 

  40. Zhang, H. J., Wen, W. D., & Cui, H. T. (2012). Study on the strength prediction model of comeld composites joints. Composites. Part B, Engineering, 43, 3310–3317.

    Article  Google Scholar 

  41. Daniel, I. M., Werner, B. T., & Fenner, J. S. (2011). Strain-rate-dependent failure criteria for composites. Composites Science and Technology, 71, 357–364.

    Article  Google Scholar 

  42. Karsh, P. K., Mukhopadhyay, T., & Dey, S. (2018). Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination. Composite Structures, 184, 554–567.

    Article  Google Scholar 

  43. Deng, X. W., Wu, N., Yang, K., & Chan, W. L. (2019). Integrated design framework of next-generation 85-m wind turbine blade: modelling, aeroelasticity and optimization. Composites. Part B, Engineering, 159, 53–61.

    Article  Google Scholar 

  44. Qiao, Y. Y., Bisagni, C., & Bai, Y. L. (2017). Experimental investigation and numerical simulation of unidirectional carbon fiber composite under multi-axial loadings. Composites. Part B, Engineering, 124, 190–206.

    Article  Google Scholar 

  45. Yao, T. Y., Deng, Z. C., Zhang, K., & Li, S. M. (2019). A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites. Part B, Engineering, 163, 393–402.

    Article  Google Scholar 

  46. Nali, P., & Carrera, E. (2012). A numerical assessment on two-dimensional failure criteria for composite layered structures. Composites. Part B, Engineering, 43, 280–289.

    Article  Google Scholar 

  47. Hu, H. T., Lin, W. P., & Tu, F. T. (2015). Failure analysis of fiber-reinforced composite laminates subjected to biaxial loads. Composites. Part B, Engineering, 83, 153–165.

    Article  Google Scholar 

  48. Guo, S. J., Li, D. C., Zhang, X., & Xiang, J. W. (2014). Buckling and post-buckling of a composite C-section with cutout and flange reinforcement. Composites. Part B, Engineering, 60, 119–124.

    Article  Google Scholar 

  49. Noor, A. K., & Tenek, L. H. (1992). Stiffness and thermoelastic coefficients for composite laminates. Composite Structures, 21, 57–66.

    Article  Google Scholar 

  50. Akkerman, R. (2002). On the properties of quasi-isotropic laminates. Composites. Part B, Engineering, 33, 133–140.

    Article  Google Scholar 

  51. Montesano, J., McCleave, B., & Singh, C. V. (2018). Prediction of ply crack evolution and stiffness degradation in multidirectional symmetric laminates under multiaxial stress states. Composites. Part B, Engineering, 133, 53–67.

    Article  Google Scholar 

  52. Kim, J. W., & Cho, J. U. (2020). Fracture properties on the adhesive interface of double cantilever beam specimens bonded with lightweight dissimilar materials at opening and sliding modes. Composites. Part B, Engineering, 198, 108240.

    Article  Google Scholar 

  53. Shokrieh, M. M., Heidari-Rarani, M., & Rahimi, S. (2012). Influence of curved delamination front on toughness of multidirectional DCB specimens. Composite Structures, 94, 1359–1365.

    Article  Google Scholar 

  54. Biscaia, H. C., Chastre, C., Cruz, D., & Viegas, A. (2017). Prediction of the interfacial performance of CFRP laminates and old timber bonded joints with different strengthening techniques. Composites. Part B, Engineering, 108, 1–17.

    Article  Google Scholar 

  55. Zhai, W. Z., Shi, X. L., Yang, K., Huang, Y. C., Zhou, L. P., & Lu, W. L. (2017). Mechanical and tribological behaviors of the tribo-layer with nanocrystalline structure during sliding contact: experiments and model assessment. Composites. Part B, Engineering, 108, 354–363.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFA0703300), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 52021003), National Natural Science Foundation of China (No. 51835006, 51875244, U19A20103), Program for JLU Science and Technology Innovative Research Team (No. 2020TD-03), the Natural Science Foundation of Jilin Province (No. 20200201232JC), Graduate innovation research program of Jilin University (101832020CX161), Interdisciplinary Integration and Innovation Project of JLU (No. JLUXKJC2021ZZ03) and supported by “Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shichao Niu or Zhiwu Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Han, Q., Qin, H. et al. Bending Resistance and Anisotropy of Basalt Fibers Laminate Composite with Bionic Helical Structure. J Bionic Eng 19, 799–815 (2022). https://doi.org/10.1007/s42235-022-00155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00155-7

Keywords

Navigation