Skip to main content
Log in

Application of Novel Design Bone Grafting for Treatment of Segmental Acetabular Rim Defects During Revision Total Hip Arthroplasty

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The study aimed to develop efficient techniques with different novel graft structures to enhance the treatment of acetabular bone deficiency. The inhomogeneous material properties Finite Element Analysis (FEA) model was reconstructed according to computed tomography images based on a healthy patient without any peri-acetabular bony defect according to the American Academy of Orthopedic Surgeons (AAOS). The FEA model of acetabular bone deficiency was performed to simulate and evaluate the mechanical performances of the grafts in different geometric structures, with the use of fixation implants (screws), along with the stress distribution and the relative micromotion of graft models. The stress distribution mainly concentrated on the region of contact of the screws and superolateral bone. Among the different structures, the mortise–tenone structure provided better relative micromotion, with suitable biomechanical property even without the use of screws. The novel grafting structures could provide sufficient biomechanical stability and bone remodeling, and the mortise–tenone structure is the optimal treatment option for acetabulum reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amirouche, F., Solitro, G. F., Walia, A., Gonzalez, M., & Bobko, A. (2017). Segmental acetabular rim defects, bone loss, oversizing, and press fit cup in total hip arthroplasty evaluated with a probabilistic finite element analysis. International Orthopaedics, 41, 1527–1533.

    Article  Google Scholar 

  2. Rodriguez, J. A., Huk, O. L., Pellicci, P. M., & Wilson, P. D. (1995). Autogenous bone grafts from the femoral head for the treatment of acetabular deficiency in primary total hip arthroplasty with cement. Long-term results. Journal of Bone and Joint Surgery-American, 77, 1227–1233.

    Article  Google Scholar 

  3. Meynen, A., Matthews, H., Nauwelaers, N., Claes, P., Mulier, M., & Scheys, L. (2020). Accurate reconstructions of pelvic defects and discontinuities using statistical shape models. Computer Methods in Biomechanics and Biomedical Engineering, 23, 1026–1033.

    Article  Google Scholar 

  4. Amenabar, T., Rahman, W. A., Hetaimish, B. M., Kuzyk, P. R., Safir, O. A., & Gross, A. E. (2016). Promising mid-term results with a cup-cage construct for large acetabular defects and pelvic discontinuity. Clinical Orthopaedics and Related Research, 474, 408–414.

    Article  Google Scholar 

  5. D’Antonio, J. A., Capello, W. N., Borden, L. S., Bargar, W. L., Bierbaum, B. F., Boettcher, W. G., Steinberg, M. E., Stulberg, S. D., & Wedge, J. H. (1989). Classification and management of acetabular abnormalities in total hip arthroplasty. Clinical Orthopaedics and Related Research, 243, 126–137.

    Article  Google Scholar 

  6. Atilla, B., Ali, H., Aksoy, M. C., Caglar, O., Tokgozoglu, A. M., & Alpaslan, M. (2007). Position of the acetabular component determines the fate of femoral head autografts in total hip replacement for acetabular dysplasia. Journal of Bone and Joint Surgery-British, 89, 874–878.

    Article  Google Scholar 

  7. Mao, Y. Q., Yu, D. G., Xu, C., Liu, F. X., Li, H. W., & Zhu, Z. A. (2014). The fate of osteophytes in the superolateral region of the acetabulum after total hip arthroplasty. Journal of Arthroplasty, 29, 2262–2266.

    Article  Google Scholar 

  8. Pilliar, R. M., Lee, J. M., & Maniatopoulos, C. (1986). Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clinical Orthopaedics and Related Research, 208, 108–113.

    Article  Google Scholar 

  9. Jasty, M., Bragdon, C., Burke, D., O’Connor, D., Lowenstein, J., & Harris, W. H. (1997). In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. Journal of Bone and Joint Surgery-American, 79, 707–714.

    Article  Google Scholar 

  10. Du, Y., Fu, J., Sun, J., Zhang, G., Chen, J., Ni, M., & Zhou, Y. (2020). Acetabular bone defect in total hip arthroplasty for crowe II or III developmental dysplasia of the hip: a finite element study. Biomed Research International, 2020, 4809013.

    Google Scholar 

  11. Garala, K., Boutefnouchet, T., Amblawaner, R., & Lawrence, T. (2020). Acetabular reconstruction using a composite layer of impacted cancellous allograft bone and cement: minimum 5-year follow-up study. Hip International. https://doi.org/10.1177/1120700020941407

    Article  Google Scholar 

  12. Samsami, S., Augat, P., & Rouhi, G. (2019). Stability of femoral neck fracture fixation: a finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233, 892–900.

    Article  Google Scholar 

  13. Park, J. Y., Kwon, H. M., Lee, W. S., Yang, I. H., & Park, K. K. (2021). Anthropometric measurement about the safe zone for transacetabular screw placement in total hip arthroplasty in asian middle-aged women: in vivo three-dimensional model analysis. Journal of Arthroplasty, 36, 744–751.

    Article  Google Scholar 

  14. Shao, Z. X., Song, Q. F., Cheng, X., Luo, H., Lin, L., Zhao, Y. Q., & Cui, G. Q. (2020). An arthroscopic “Inlay” bristow procedure with suture button fixation for the treatment of recurrent anterior glenohumeral instability: 3-year follow-up. American Journal of Sports Medicine, 48, 2638–2649.

    Article  Google Scholar 

  15. Chen, C. C., Qiu, H. X., & Lu, Y. (2016). Flexural behaviour of timber dovetail mortise-tenon joints. Construction and Building Materials, 112, 366–377.

    Article  Google Scholar 

  16. Hao, Z. X., Wan, C., Gao, X. F., & Ji, T. (2011). The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: A three-dimensional finite element model. Journal of Biomechanical Engineering-Transactions of the Asme, 133, 9.

    Article  Google Scholar 

  17. Zhang, A. B., Chen, H., Liu, Y., Wu, N. C., Chen, B. P., Zhao, X., Han, Q., & Wang, J. C. (2021). Customized reconstructive prosthesis design based on topological optimization to treat severe proximal tibia defect. Bio-Design and Manufacturing, 4, 87–99.

    Article  Google Scholar 

  18. Xiao, J. L., Zhao, X., Wang, Y. M., Yang, Y. H., Zhao, J. H., Gao, Z. L., & Zuo, J. L. (2018). Application of acetabular reinforcement ring with hook for correction of segmental acetabular rim defects during total hip arthroplasty revision. Journal of Bionic Engineering, 15, 154–159.

    Article  Google Scholar 

  19. Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., & Duda, G. N. (2001). Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34, 859–871.

    Article  Google Scholar 

  20. Pagnano, W., Hanssen, A. D., Lewallen, D. G., & Shaughnessy, W. J. (1996). The effect of superior placement of the acetabular component on the rate of loosening after total hip arthroplasty. Journal of Bone and Joint Surgery-American, 78, 1004–1014.

    Article  Google Scholar 

  21. Mou, P., Liao, K., Chen, H. L., & Yang, J. (2020). Controlled fracture of the medial wall versus structural autograft with bulk femoral head to increase cup coverage by host bone for total hip arthroplasty in osteoarthritis secondary to developmental dysplasia of the hip: a retrospective cohort study. Journal of Orthopaedic Surgery and Research, 15, 12.

    Article  Google Scholar 

  22. Muramatsu, K., Ihara, K., Hashimoto, T., Seto, S., & Taguchi, T. (2007). Combined use of free vascularised bone graft and extracorporeally-irradiated autograft for the reconstruction of massive bone defects after resection of malignant tumour. Journal of Plastic Reconstructive and Aesthetic Surgery, 60, 1013–1018.

    Article  Google Scholar 

  23. Goto, E., Umeda, H., Otsubo, M., & Teranishi, T. (2021). Cemented acetabular component with femoral neck autograft for acetabular reconstruction in Crowe type III dislocated hips a 20-to 30-year follow-up study. Bone & Joint Journal, 103B, 299–304.

    Article  Google Scholar 

  24. Garcia-Cimbrelo, E., Cruz-Pardos, A., Garcia-Rey, E., & Ortega-Chamarro, J. (2010). The survival and fate of acetabular reconstruction with impaction grafting for large defects. Clinical Orthopaedics and Related Research, 468, 3304–3313.

    Article  Google Scholar 

  25. Busch, V., Gardeniers, J. W. M., Verdonschot, N., Slooff, T., & Schreurs, B. W. (2011). Acetabular reconstruction with impaction bone-grafting and a cemented cup in patients younger than fifty years old a concise follow-up, at twenty to twenty-eight years, of a previous report. Journal of Bone and Joint Surgery-American, 93A, 367–371.

    Article  Google Scholar 

  26. Gerber, S. D., & Harris, W. H. (1986). Femoral head autografting to augment acetabular deficiency in patients requiring total hip replacement. A minimum five-year and an average seven-year follow-up study. Journal of Bone and Joint Surgery-American, 68, 1241–1248.

    Article  Google Scholar 

  27. van Haaren, E. H., Heyligers, I. C., Alexander, F. G. M., & Wuisman, P. (2007). High rate of failure of impaction grafting in large acetabular defects. Journal of Bone and Joint Surgery-British, 89B, 296–300.

    Article  Google Scholar 

  28. Nelissen, R., Valstar, E. R., Poll, R. G., Garling, E. H., & Brand, R. (2002). Factors associated with excessive migration in bone impaction hip revision surgery—a radiostereometric analysis study. Journal of Arthroplasty, 17, 826–833.

    Article  Google Scholar 

  29. Fu, J., Ni, M., Chen, J. Y., Li, X., Chai, W., Hao, L. B., Zhang, G. Q., & Zhou, Y. G. (2018). Reconstruction of severe acetabular bone defect with 3D printed Ti6Al4V augment: a finite element study. Biomed Research International, 2018, 6367203.

    Google Scholar 

  30. Levine, D. L., Dharia, M. A., Siggelkow, E., Crowninshield, R. D., Degroff, D. A., & Wentz, D. H. (2010). Repair of periprosthetic pelvis defects with porous metal implants: A finite element study. Journal of Biomechanical Engineering-Transactions of the Asme, 132, 021006.

    Article  Google Scholar 

  31. Dong, E. C., Wang, L., Iqbal, T., Li, D. C., Liu, Y. X., He, J. K., Zhao, B. H., & Li, Y. (2018). Finite element analysis of the pelvis after customized prosthesis reconstruction. Journal of Bionic Engineering, 15, 443–451.

    Article  Google Scholar 

  32. Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19, 1627–1639.

    Article  Google Scholar 

  33. Zhao, X., Chosa, E., Yamako, G., Watanabe, S., Deng, G., & Totoribe, K. (2013). Effect of acetabular reinforcement ring with hook for acetabular dysplasia clarified by three-dimensional finite element analysis. Journal of Arthroplasty, 28, 1765–1769.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the following grants: National Natural Science Foundation of China [Grant Numbers 82072456 and 81802174]; National Key R&D Program of China [Grant Number. 2018YFB1105100]; Bethune plan of Jilin University [Grant Number 419161900014]; Wu Jieping Medical Foundation [3R119C073429]; Department of Science and Technology of Jilin Province, P.R.C. [Grant Numbers 20200404202YY and 20200201453JC]; Department of Finance in Jilin province [Grant Numbers 2019SCZT046 and 2020SCZT037]; undergraduate teaching reform research project of Jilin University [Grant Number 4Z2000610852]; key training plan for outstanding young teachers of Jilin University [Grant Number 419080520253]; Jilin Province Development and Reform Commission, P.R.C. [Grant Number 2018C010] and Natural Science Foundation of Jilin Province [Grant Number 20200201345JC].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlin Xiao, Chenyu Wang, Qing Han or Jincheng Wang.

Ethics declarations

Conflict of interest

The authors declare they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Xue, H., Sun, Y. et al. Application of Novel Design Bone Grafting for Treatment of Segmental Acetabular Rim Defects During Revision Total Hip Arthroplasty. J Bionic Eng 18, 1369–1377 (2021). https://doi.org/10.1007/s42235-021-00097-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00097-6

Keywords

Navigation