Skip to main content
Log in

A Camouflaged Film Imitating the Chameleon Skin with Color-Changing Microfluidic Systems Based on the Color Information Identification of Background

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

To adapt to a complex and variable environment, self-adaptive camouflage technology is becoming more and more important in all kinds of military applications by overcoming the weakness of the static camouflage. In nature, the chameleon can achieve self-adaptive camouflage by changing its skin color in real time with the change of the background color. To imitate the chameleon skin, a camouflaged film controlled by a color-changing microfluidic system is proposed in this paper. The film with microfluidic channels fabricated by soft materials can achieve dynamic cloaking and camouflage by circulating color liquids through channels inside the film. By sensing and collecting environmental color change information, the control signal of the microfluidic system can be adjusted in real time to imitate chameleon skin. The microstructure of the film and the working principle of the microfluidic color-changing system are introduced. The mechanism to generate the control signal by information processing of background colors is illustrated. “Canny” double-threshold edge detection algorithm and color similarity are used to analyze and evaluate the camouflage. The tested results show that camouflaged images have a relatively high compatibility with environmental backgrounds and the dynamic cloaking effect can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu, R., Zhou, S. L., Li, Y., Lei, D. Y., Luo, X. B., & Qiu, C. W. (2018). Illusion thermotics. Advanced Materials, 30, 1707237.

    Article  Google Scholar 

  2. Song, J. L., Huang, S. Y., Ma, Y. P., Cheng, Q., Hu, R., & Luo, X. B. (2020). Radiative metasurface for thermal camouflage, illusion and messaging. Optics Express, 28, 875–885.

    Article  Google Scholar 

  3. Hu, R., Liu, Y. D., Shin, S. M., Huang, S. Y., Ren, X. C., Shu, W. C., Cheng, J. J., Tao, G. M., Xu, W. L., Chen, R. K., & Luo, X. B. (2020). Emerging materials and strategies for personal thermal management. Advanced Energy Materials, 10, 1903921.

    Article  Google Scholar 

  4. Liu, Y. D., Song, J. L., Zhao, W. X., Ren, X. C., Cheng, Q., Luo, X. B., Fang, N. X. L., & Hu, R. (2020). Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 9, 855–863.

    Article  Google Scholar 

  5. Zhang, J. W., Huang, S. Y., & Hu, R. (2021). Adaptive radiative thermal camouflage via synchronous heat conduction. Chinese Physics Letters, 38, 010502.

    Article  Google Scholar 

  6. Ji, H. N., Liu, D. Q., Cheng, H. F., Zhang, C. Y., Yang, L. X., & Ren, D. W. (2017). Infrared thermochromic properties of monoclinic VO2 nanopowders using a malic acid-assisted hydrothermal method for adaptive camouflage. RSC Advances, 7, 5189–5194.

    Article  Google Scholar 

  7. Liu, D. Q., Chen, H. F., Xing, X., Zhang, C. Y., & Zheng, W. W. (2016). Thermochromic properties of W-doped VO2 thin films deposited by aqueous sol-gel method for adaptive infrared stealth application. Infrared Physics & Technology, 77, 339–343.

    Article  Google Scholar 

  8. Rajyalakshmi, T., Basha, S. J., Khidhirbrahmendra, V., Thampy, U. S. U., & Ravikumar, R. (2020). Synthesis and investigations for white LED material: VO2+ doped calcium cadmium phosphate hydrate nanophosphor. Journal of Molecular Structure, 1205, 127605.

    Article  Google Scholar 

  9. Mjejri, I., & Rougier, A. (2020). Color switching in V3O7 center dot H2O films cycled in Li and Na based electrolytes: Novel vanadium oxide based electrochromic materials. Journal of Materials Chemistry C, 8, 3631–3638.

    Article  Google Scholar 

  10. Landry, A., Son, T. V., Martucci, A., & Hache, A. (2020). Color switching by polarization effects in phase change materials. Optics Communications, 459, 124957.

    Article  Google Scholar 

  11. Maji, K., Acharyya, P., Satapathy, P., Prasad, S. K., & Biswas, K. (2019). Mechanochemical synthesis and temperature-dependent optical properties of thermochromic (Ag1−xCux)2HgI4. Chemistry an Asian Journal, 14, 4641–4644.

    Article  Google Scholar 

  12. Yu, C. J., Li, Y. H., Zhang, X., Huang, X., Malyarchuk, V., Wang, S. D., Shi, Y., Gao, L., Su, Y. W., Zhang, Y. H., Xu, H. X., HanLon, R. T., Huang, Y. G., & Rogers, J. A. (2014). Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proceedings of the National Academy of the United States of America, 111, 12998–13003.

    Article  Google Scholar 

  13. Wang, Z. L. L., & Guo, Z. G. (2018). Biomimetic photonic structures with tunable structural colours: From natural to biomimetic to applications. Journal of Bionic Engineering, 15, 1–33.

    Article  Google Scholar 

  14. Ma, D. Y., & Wang, J. M. (2017). Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China Chemistry, 60, 54–62.

    Article  MathSciNet  Google Scholar 

  15. Wan, X. H., & Xu, C. Y. (2017). Special topic on recent progress in electrochromism. Science China Chemistry, 60, 1–2.

    Article  Google Scholar 

  16. Han, M. S., Poduval, M. K., Shin, H. J., Tamaoki, N., Park, T., Kim, Y., & Kim, E. (2017). Programmable dual electrochromism in azine linked conjugated polymer. Optical Materials Express, 7, 2117–2125.

    Article  Google Scholar 

  17. Shao, J. Y., Yao, C. J., Cui, B. B., Gong, Z. L., & Zhong, Y. W. (2016). Electropolymerized films of redox-active ruthenium complexes for multistate near-infrared electrochromism, ion sensing, and information storage. Chinese Chemical Letters, 27, 1105–1114.

    Article  Google Scholar 

  18. Yu, H. T., Shao, S., & Yan, L. J. (2016). Side-chain engineering of green color electrochromic polymer materials: Toward adaptive camouflage application. Journal of Materials Chemistry C, 4, 2269–2273.

    Article  Google Scholar 

  19. Ling, Y., Xiang, C. L., & Zhou, G. (2017). Multicolored electrochromism from benzodipyrrolidone-based ambipolar electrochromes at a fixed potential. Journal of Materials Chemistry C, 5, 290–300.

    Article  Google Scholar 

  20. Choi, G. J., & Gwag, J. S. (2015). Optical design for reflective liquid crystal displays. Molecular Crystals and Liquid Crystals, 613, 103–109.

    Article  Google Scholar 

  21. Sun, J., Srivastava, A. K., Zhang, W., Wang, L., Chigrinov, V. G., & Kwok, H. S. (2014). Optically rewritable 3D liquid crystal displays. Optics Letters, 39, 6209–6212.

    Article  Google Scholar 

  22. Jiang, Y., Xu, D., Li, X., Lin, C., Li, W., An, Q., Tao, C. A., Tang, H., & Li, G. (2012). Electrothermally driven structural colour based on liquid crystal elastomers. Journal of Materials Chemistry, 22, 11943–11949.

    Article  Google Scholar 

  23. Dumas, J. C., Vidal, J., & Dumas, V. (2012). Fast response liquid crystal glasses. Lighting Research Technology, 44, 498–505.

    Article  Google Scholar 

  24. Kasahara, T., Ishimatsu, R., Kuwae, H., Shoji, S., & Mizuno, J. (2018). Color-tunable microfluidic electrogenerated chemiluminescence cells using Y-shaped micromixer. Japanese Journal of Applied Physics, 57, 128001.

    Article  Google Scholar 

  25. Kobayash, K., & Onoe, H. (2018). Microfluidic-based flexible reflective multicolor display. Microsystems & Nanoengineering, 4, 17.

    Article  Google Scholar 

  26. Heikenfeld, J., Zhou, K., Kreit, E., Raj, B., Yang, S., Sun, B., Milarcik, A., Clapp, L., & Schwartz, R. (2009). Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions. Nature Photonics, 3, 292–296.

    Article  Google Scholar 

  27. Morin, S. A., Shepherd, R. F., Kwok, S. W., Stokes, A. A., Nemiroski, A., & Whitesides, G. M. (2012). Camouflage and display for soft machines. Science, 337, 828–832.

    Article  Google Scholar 

  28. Zhang, M., & Li, S. J. (2016). Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication. Springerplus, 5, 580.

    Article  Google Scholar 

  29. Li, S. J., Zhang, M., & Nie, B. X. (2016). A microfluidic system for liquid colour-changing glasses with shutter shade effect. Microsystem Technologies-micro-and Nanosystems-information Storage and Processing Systems, 22, 2067–2075.

    Google Scholar 

  30. Fishman A, Catsis S, Homer M, Rossiter J M. Smart squid skin: patterns in networks of artificial chromatophores. SPIE 20th Conference on Electroactive Polymers Actuators and Devices (EAPAD), Denver, CO, USA, 2018, 10594, 105941S.

  31. Wang, G. P., Chen, X. C., Liu, S., Wong, C. P., & Chu, S. (2016). Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano, 10, 1788–1794.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to give their acknowledgement to the National Natural Science Foundation of China for the support (No. 51175101) on this paper.

Author information

Authors and Affiliations

Authors

Contributions

SL conceived and designed the research. HL and TY wrote the main manuscript text. HL and LL did all the experiments and prepared all the figures. All the authors contributed to the discussion of the results. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Songjing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, T., Li, L. et al. A Camouflaged Film Imitating the Chameleon Skin with Color-Changing Microfluidic Systems Based on the Color Information Identification of Background. J Bionic Eng 18, 1137–1146 (2021). https://doi.org/10.1007/s42235-021-00091-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00091-y

Keywords

Navigation