Skip to main content

Advertisement

Log in

A portable recombinase polymerase amplification assay for the rapid detection of cucurbit leaf crumple virus in watermelon leaves and fruits

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cucurbit leaf crumple virus (CuLCrV), a single-stranded DNA virus belonging to the species Cucurbit leaf crumple virus in the genus Begomovirus, causes cucurbit leaf crumple disease in many species of the Cucurbitaceae family. This report describes the development and standardization of field-based isothermal recombinase polymerase amplification (RPA) and exonuclease RPA (exo-RPA) assays for the detection and diagnosis of CuLCrV in the leaves of watermelon, squash and pumpkin, and the fruits of watermelon. The oligonucleotide primers were made to target a portion of the BL1 movement protein. The primer set used in the RPA was highly specific for CuLCrV and did not show a cross-reaction with other cucurbit viruses nor in tissues with co-infections of CuLCrV with cucurbit yellow stunting disorder virus (CYSDV) and/or squash vein yellowing virus (SqVYV). These assays were sensitive, producing a positive signal with 1 fg/uL of purified total DNA and at a dilution of 1 × 10–5 of crude extract from CuLCrV-infected watermelon plants. Incorporation of a 6-fluorescein amidite (6-FAM) probe into the exo-RPA assay enabled a total sample processing and detection time of 30 min and positive reactions were detectable in different tissues including watermelon leaves, fruits, and pips (seeds lacking an embryo). The exo-RPA was efficiently used in the detection of CuLCrV in 21 cucurbit plants growing in different regions of southeastern U.S. A sensitive, rapid and easy field-based method for the detection and diagnosis of CuLCrV in watermelon was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkins S, Webb SE, Achor D, Roberts PD, Baker CA (2007) Identification and characterization of a novel whitefly-transmitted member of the family Potyviridae isolated from cucurbits in Florida. Phytopathology 97:145–154

    CAS  PubMed  Google Scholar 

  • Adkins S, Polston JE, Turechek WW (2009a) Cucurbit leaf crumple virus identified in common bean in Florida. Plant Dis 93:320

    CAS  PubMed  Google Scholar 

  • Adkins S, Webster CG, Baker CA, Weaver R, Rosskopf EN, Turechek WW (2009b) Detection of three whitefly-transmitted viruses infecting the cucurbit weed Cucumis melo var. dudaim in Florida. Plant Health Prog. https://doi.org/10.1094/PHP-2009-1118-01-BR

  • Adkins S, Webster CG, Kousik CS, Webb SE, Roberts PD, Stansly PA, Turechek WW (2011) Ecology and management of whitefly-transmitted viruses of vegetable crops in Florida. Virus Res 159:110–114

    CAS  PubMed  Google Scholar 

  • Adkins S, McCollum TG, Albano JP, Kousik CS, Webster CG, Roberts PD, Webb SE, Turechek WW (2013) Physiological effects of Squash vein yellowing virus infection on watermelon. Plant Dis 97:1137–1148

    CAS  PubMed  Google Scholar 

  • Akad F, Webb S, Nyoike TW, Liburd OE (2008) Detection of Cucurbit leaf crumple virus in Florida cucurbits. Plant Dis 92:648

    CAS  PubMed  Google Scholar 

  • Babu B, Ochoa-Corona FM, Paret ML (2018) Recombinase polymerase amplification applied to plant virus detection and potential implications. Anal Biochem 546:72–77

    CAS  PubMed  Google Scholar 

  • Babu B, Washburn BK, Ertek TS, Miller SH, Riddle CB, Knox G, Ochoa-Corona FM, Olson J, Katircioglu YZ, Paret M (2017) A field-based detection for Rose rosette virus using isothermal probe-based reverse transcriptase polymerase amplification assay. J Virol Methods 247:81–90

    CAS  PubMed  Google Scholar 

  • Brown JK, Idris AM, Olsen MW, Miller ME, Isakeit T, Anciso J (2000) Cucurbit leaf curl virus, a new whitefly transmitted geminivirus in Arizona, Texas, and Mexico. Plant Dis 84:809

    CAS  PubMed  Google Scholar 

  • Brown JK, Idris AM, Alteri C, Strenger DC (2002) Emergence of a new cucurbit-infecting begomovirus species capable of forming viable reassortants with related viruses in the Squash leaf curl virus cluster. Phytopathology 92:734–742

    CAS  PubMed  Google Scholar 

  • Chen S, Gu H, Wang X, Chen J, Zhu W (2011) Multiplex RT-PCR detection of Cucumber mosaic virus subgroups and Tobamoviruses infecting tomato using 18S rRNA as an internal control. Acta Biochim Biophys Sin 43:465–471

    CAS  PubMed  Google Scholar 

  • Cho JD, Lee JH, Ko SJ, Choi HS, Lee SH, Cho GS, Kim JS (2011) Symptoms of cucumber virus diseases occurred in Sangu and Gurye in 2006 and 2007. Res Plant Dis 12:196–204

    Google Scholar 

  • Cohen S, Duffus JE, Larsen RC, Lin HY, Flock RA (1983) Purification, serology, and vector relationships of squash leaf curl virus, a whitefly-transmitted geminivirus. Phytopathology 73:1669–1673

    Google Scholar 

  • Davis RF, Mizuki MK (1987) Detection of cucurbit viruses in New Jersey. Plant Dis 71:40–44

    Google Scholar 

  • FAOSTAT (2017) www.faostat.fao.org

  • Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gadhave KR, Dutta B, Coolong T, Sparks AN, Adkins S, Srinivasan R (2018) First report of Cucurbit yellow stunting disorder virus in cucurbits in Georgia. United States Plant Dis 19:9–10

    Google Scholar 

  • Guzmán P, Sudarshana M, Seo YS, Rojas MR, Natwick E, Turini T, Mayberry K, Gilbertson RL (2000) A new bipartite geminivirus (Begomovirus) causing leaf curl and crumpling in cucurbits in the Imperial Valley of California. Plant Dis 84:488

    PubMed  Google Scholar 

  • Hagen C, Rojas MR, Kon T, Gilbertson RL (2008a) Recovery from Cucurbit leaf crumple virus (Family Geminiviridae, Genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98:1029–1037

    CAS  PubMed  Google Scholar 

  • Hagen C, Rojas MR, Sudarshana MR, Xoconostle-Cazares B, Natwick ET, Turini TA, Gilbertson RL (2008b) Biology and molecular characterization of Cucurbit leaf crumple virus, an emergent cucurbit-infecting begomovirus in the Imperial Valley of California. Plant Dis 92:781–793

    CAS  PubMed  Google Scholar 

  • Haible D, Kober S, Jeske H (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16

    CAS  PubMed  Google Scholar 

  • Huang LH, Tseng HH, Li JT, Chen TC (2010) First report of Cucurbit chlorotic yellows virus infecting cucurbits in Taiwan. Plant Dis 94:168

    Google Scholar 

  • Jiao Y, Jiang J, Wu Y, Xia Z (2019) Rapid detection of Cucumber green mottle mosaic virus in watermelon through a recombinase polymerase amplification assay. J Virol Methods 270:146–149

    CAS  PubMed  Google Scholar 

  • Keinath AP, Ling KS, Adkins S, Hasegawa DK, Simmons AM, Hoak S, Mellinger HC, Kousik CS (2018) First report of Cucurbit leaf crumple virus infecting three cucurbit crops in South Carolina. Plant Health Prog 19:322–323

    Google Scholar 

  • Kuo YW, Rojas MR, Gilbertson RL, Wintermantel WM (2007) First report of Cucurbit yellow stunting disorder virus in California and Arizona, in association with Cucurbit leaf crumple virus and Squash leaf curl virus. Plant Dis 91:330

    PubMed  Google Scholar 

  • Lecoq H, Desbiez C (2012) Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture. Adv Virus Res 84:67–126

    PubMed  Google Scholar 

  • Ling KS, Wechter WP, Walcott RR, Keinath AP (2011) Development of a real-time RT-PCR assay for Squash mosaic virus useful for broad spectrum detection of various stereotypes and its incorporation into a multiplex seed health assay. J Phytopathol 159:649–656

    CAS  Google Scholar 

  • Lobato IM, O’Sullivan CK (2018) Recombinase polymerase amplification: Basics, applications and recent advances. Trends Analyt Chem 98:19–35

    CAS  PubMed  Google Scholar 

  • Londoño MA, Harmon CL, Polston JE (2016) Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virol J 13:48

    PubMed  PubMed Central  Google Scholar 

  • Maliogka V, Dovas CI, Efthimiou K, Katis NI (2004) Detection and differentiation of Comoviridae species using a semi-nested RT-PCR and a phylogenetic analysis based on the polymerase protein. J Phytopathol 152:404–409

    CAS  Google Scholar 

  • Matthews REF (1992) Fundamentals of plant virology 1st edition. New York, USA

  • McCreight JD, Lui HY (2008) Genetic resistance to Cucurbit leaf crumple virus in melon. HortScience 43:122–126

    CAS  Google Scholar 

  • Mekuria TA, Zhang S, Eastwell KC (2014) Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. J Virol Methods 205:24–30

    CAS  PubMed  Google Scholar 

  • Miles TD, Martin FN, Coffey MD (2015) Development of rapid isothermal amplification assays for detection of Phytophthora spp. In Plant. Tissue Phytopathol 105:265–278

    CAS  Google Scholar 

  • Miller SA, Martin RR (1988) Molecular diagnosis of plant disease. Ann Rev Phytopathol 26:409–432

    CAS  Google Scholar 

  • Nameth ST, Dodds JA, Paulus AO, Laemmlen FF (1986) Cucurbit viruses of California: an ever-changing problem. Plant Dis 70:8–12

    Google Scholar 

  • Polston JE, Hladky LL, Akad F, Wintermantel WM (2008) First report of Cucurbit yellow stunting disorder virus in cucurbits in Florida. Plant Dis 92:1251

    CAS  PubMed  Google Scholar 

  • Rojas MR, Gilbertson RL, Russel DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect white-fly transmitted geminiviruses. Plant Dis 77:340–347

    CAS  Google Scholar 

  • Rojas MR, Jiang H, Salati R, Xoconostle-Cazares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110–125

    CAS  PubMed  Google Scholar 

  • Rosen R, Kanakala S, Kliot A, Pakkianathan BC, Farich BA, Santana-Magal N, Elimelech M, Kontsedalov S, Lebedev G, Cilia M, Ghanim M (2015) Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol 15:1–8

    PubMed  Google Scholar 

  • Sandhu PS, Kang SS, Kaul VK (2007) Biochemical and histological deviations induced in muskmelon by mosaic disease and its impact on yield and quality. Indian J Virol 18:79–82

    Google Scholar 

  • Silva G, Oyekanmi J, Nkere CK, Bömer M, Kumar PL, Seal SE (2018) Rapid detection of potyviruses from crude plant extracts. Anal Biochem 546:17–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strayer-Scherer A, Jones JB, Paret ML (2019) Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology 109:690–700. https://doi.org/10.1094/PHYTO-03-18-0101-R

    Article  CAS  PubMed  Google Scholar 

  • Turechek WW, Kousik CS, Adkins S (2010) Distribution of four viruses in single and mixed infections within infected watermelon plants in Florida. Phytopathology 100:1194–1203

    PubMed  Google Scholar 

  • Vincelli P, Tisserat N (2008) Nucleic acid-based pathogen detection in applied plant pathology. Plant Dis 92:660–669

    CAS  PubMed  Google Scholar 

  • Vindyashree M, Maheswari S, Govindappa MR (2016) Biological and molecular detection of leaf curl begomovirus disease of sunflower (Helianthus annuus L.) in tobacco. IJSRP 6:443–447

    Google Scholar 

  • Wambua L, Schneider B, Okwaro A, Wanga JO, Imail O, Wambua PN, Agutu L, Olds C, Jones CS, Masiga D, Midega C, Khan Z, Jores J, Fischer A (2017) Development of field-applicable tests for rapid and sensitive detection of Candidatus Phytoplasma oryzae. Mol Cell Probes 35:44–56

    CAS  PubMed  Google Scholar 

  • Wyatt SD, Brown JK (1996) Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology 86:1288–1293

    Google Scholar 

  • Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A, and ICTV Report Consortium (2017) ICTV Virus Taxonomy Profile: Geminiviridae. J Gen Virol 98:131–133

    PubMed  Google Scholar 

  • Zhang S, Ravelonandro M, Russell P, McOwen N, Briard P, Bohannon S, Vrient A (2014) Rapid diagnostic detection of Plum pox virus in Prunus plants by isothermal AmplifyRP using reverse transcription-recombinase polymerase amplification. J Virol Methods 207:114–120

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Florida Watermelon Association (FWA). The authors are thankful to Laura Land of the FWA for continued support, Dr. Babu Srinivasan and Dr. Bhabesh Dutta at the University of Georgia for sample collection in Georgia, and Dr. Scott Adkins, USDA-ARS for the valuable suggestions on the first draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melanie Kalischuk or Mathews Paret.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalischuk, M., Hendricks, K., Hochmuth, R. et al. A portable recombinase polymerase amplification assay for the rapid detection of cucurbit leaf crumple virus in watermelon leaves and fruits. J Plant Pathol 104, 215–224 (2022). https://doi.org/10.1007/s42161-021-00973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-021-00973-4

Keywords

Navigation