Skip to main content
Log in

Electrochemical reduction of CO2 by graphitized carbon nitride composite anion exchange membranes: potential for high CO selectivity

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A series of crosslinked poly(norbornene)-based composite anion exchange membranes, PHMNHD@CN-X, with different graphitized carbon nitride (g-C3N4) contents were prepared by synthesizing new norbornene-like monomers and using g-C3N4 as filler. These membranes were utilized for CO2 reduction reaction (CO2RR). The analysis indicates that PHMNHD@CN-1, a composite membrane containing 1% g-C3N4, has a hydroxide conductivity of 51.29 mS cm−1, which is significantly higher than the hydroxide conductivity of the commercial membrane called Sustainion Grade RT, which is 30.88 mS cm−1. Meanwhile, the anion exchange membrane with filler modification, PHMNHD@CN-1, demonstrated superior electrolytic performance in a homemade membrane electrode assembly (MEA) electrolyzer, achieving a current density of 83.89 mA cm−2 at the cell voltage of 3 V. At current densities of 100 to 130 mA cm−2, PHMNHD@CN-1 displayed a higher CO Faraday efficiency (FECO%) of 92.41%. These results suggest that the modified anion exchange membrane has a promising potential for CO2RR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data from in this study are available upon request from the corresponding author.

References

  1. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H, Li H, Wasnik P, Lu N, Guo Z, Wei H, Cheng B (2023) Boron and fluorine co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  CAS  Google Scholar 

  2. Li F, Wu N, Kimura H, Wang Y, Xu BB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett 15(1):220. https://doi.org/10.1007/s40820-023-01197-0

    Article  CAS  Google Scholar 

  3. Lin Z, Li X, Zhang H, Xu BB, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 18:4358–4392. https://doi.org/10.1039/D3QI00819C

    Article  Google Scholar 

  4. Zhang K, Liu X, Bi J, BaQais A, Xu BB, Amin MA, Hou Y, Liu X, Li H, Algadi H, Xu J, Guo Z (2023) Bimetallic NiCe/Lay catalysts facilitated co-pyrolysis of oleic acid and methanol for efficiently preparing anaerobic hydrocarbon fuels. New J Chem 47(39):18272–18284. https://doi.org/10.1039/D3NJ01359F

    Article  CAS  Google Scholar 

  5. Liu Z, Li B, Qiao F, Zhang Y, Wang X, Niu Z, Wang J, Lu H, Su S, Pan R, Wang Y, Xue Y (2022) Catalytic performance of Li/Mg composites for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. ACS Omega 7(6):5032–5038. https://doi.org/10.1021/acsomega.1c05968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang C, Liu X, Yang T, Sridhar D, Algadi H, Bin Xu B, El-Bahy ZM, Li H, Ma Y, Li T, Guo Z (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144. https://doi.org/10.1016/j.seppur.2023.124144

    Article  CAS  Google Scholar 

  7. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front Press. https://doi.org/10.1039/D3QI01283B

    Article  Google Scholar 

  8. Zeng J, Xie W, Guo Y, Zhao T, Zhou H, Wang Q, Li H, Guo Z, Xu BB, Gu H (2024) Magnetic field facilitated electrocatalytic degradation of tetracycline in wastewater by magnetic porous carbonized phthalonitrile resin. Appl Catal B 340:123225. https://doi.org/10.1016/j.apcatb.2023.123225

    Article  CAS  Google Scholar 

  9. Jia S, Song S, Zhao X (2021) Selective adsorption and separation of dyes from aqueous solution by a zirconium-based porous framework material. Appl Organomet Chem 35(9):e6314. https://doi.org/10.1002/aoc.6314

    Article  CAS  Google Scholar 

  10. Zhao X, Zheng M, Gao X, Zhang J, Wang E, Gao Z (2021) The application of MOFs-based materials for antibacterials adsorption. Coord Chem Rev 440:213970. https://doi.org/10.1016/j.ccr.2021.213970

    Article  CAS  Google Scholar 

  11. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  12. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  CAS  PubMed  Google Scholar 

  13. Ruan J, Chang Z, Rong H, Alomar TS, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu BB, Guo Z, El-Bahy ZM, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

    Article  CAS  Google Scholar 

  14. Zhi C, Yang W (2021) Improvement of Mo-doping on sulfur-poisoning of Ni catalyst: activity and selectivity to CO methanation. Comput Theor Chem 1197:113140. https://doi.org/10.1016/j.comptc.2020.113140

    Article  CAS  Google Scholar 

  15. Xin F, Tian Y, Zhang X (2020) Ratiometric fluorescent probe for highly selective detection of gaseous H2Se. Dyes Pigm 177:108274. https://doi.org/10.1016/j.dyepig.2020.108274

    Article  CAS  Google Scholar 

  16. Chanthee S, Asavatesanupap C, Sertphon D, Nakkhong T, Subjalearndee N, Santikunaporn M (2024) Surface transformation of carbon nanofibers via co-electrospinning with natural rubber and Ni doping for carbon dioxide adsorption and supercapacitor applications. Eng Sci 27:975. https://doi.org/10.30919/es975

    Article  Google Scholar 

  17. Akimbekov NS, Digel I, Marzhan K, Tastambek KT, Sherelkhan DK, Qiao X (2023) Microbial co-processing and beneficiation of low-rank coals for clean fuel production: a review. Eng Sci 25:942. https://doi.org/10.30919/es942

    Article  CAS  Google Scholar 

  18. Li X, He J, Liu M, Bai J, Bai Z, Li W (2022) Interaction between coal and biomass during co-gasification: a perspective based on the separation of blended Char. Processes 10(2):286

    Article  Google Scholar 

  19. Shi J, Wang A, An Y, Chen S, Bi C, Qu L, Shi C, Kang F, Sun C, Huang Z, Qi H, Hu J (2023) Core@shell-structured catalysts based on Mg-O-Cu bond for highly selective photoreduction of carbon dioxide to methane. Adv Compos Hybrid Mater 7(1):2. https://doi.org/10.1007/s42114-023-00801-6

    Article  CAS  Google Scholar 

  20. Iniyan S, Ren J, Deshmukh S, Rajeswaran K, Jegan G, Hou H, Suryanarayanan V, Murugadoss V, Kathiresan M, Xu BB, Guo Z (2023) An overview of metal-organic framework based electrocatalysts: design and synthesis for electrochemical hydrogen evolution, oxygen evolution, and carbon dioxide reduction reactions. Chem Rec 23(12):e202300317. https://doi.org/10.1002/tcr.202300317

    Article  CAS  PubMed  Google Scholar 

  21. Ping D, Yi F, Zhang G, Wu S, Fang S, Hu K, Xu BB, Ren J, Guo Z (2023) NH4Cl-assisted preparation of single ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/j.jmst.2022.10.006

    Article  CAS  Google Scholar 

  22. Chamanehpour E, Sayadi MH, Hajiani M (2022) A hierarchical graphitic carbon nitride supported by metal–organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation. Adv Compos Hybrid Mater 5(3):2461–2477. https://doi.org/10.1007/s42114-022-00459-6

    Article  CAS  Google Scholar 

  23. Deji JRÂÂ, Chauhan ÂM, Choudhary BC, Sharma RK (2022) Density functional theory study of manganese doped armchair graphene nanoribbon for effective carbon dioxide gas sensing. ES Energy Environ 18:47–55. https://doi.org/10.30919/esee8c701

    Article  CAS  Google Scholar 

  24. Alinejad S, Quinson J, Wiberg GKH, Schlegel N, Zhang D, Li Y, Reichenberger S, Barcikowski S, Arenz M (2022) Electrochemical Reduction of CO2 on Au electrocatalysts in a zero-gap, half-cell gas diffusion electrode setup: a systematic performance evaluation and comparison to an H-cell setup. ChemElectroChem. https://doi.org/10.1002/celc.202200341

    Article  Google Scholar 

  25. Lees EW, Mowbray BAW, Parlane FGL, Berlinguette CP (2021) Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Reviews Mater 7(1):55–64. https://doi.org/10.1038/s41578-021-00356-2

    Article  CAS  Google Scholar 

  26. Zhang Z, Huang X, Chen Z, Zhu J, Endrődi B, Janáky C, Deng D (2023) Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew Chem Int Ed. https://doi.org/10.1002/anie.202302789

    Article  Google Scholar 

  27. Gao CY, Liao JY, Lu JQ, Ma JW, Kianfar E (2021) The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. Rev Inorg Chem 41(1):1–20. https://doi.org/10.1515/revic-2020-0007

    Article  CAS  Google Scholar 

  28. Das R, Dutta BK (2023) Development and application of ceramic membranes for treatment of oily wastes. ES Energy Environ 22:1015. https://doi.org/10.30919/esee1015

    Article  CAS  Google Scholar 

  29. Kaur R, Goyat R, Singh J, Umar A, Chaudhry V, Akbar S (2023) An overview of membrane distillation technology: one of the perfect fighters for desalination. Eng Sci 21:771. https://doi.org/10.30919/es8d771

    Article  CAS  Google Scholar 

  30. Zhang C, Sun J, Lyu S, Lu Z, Li T, Yang Y, Li B, Han H, Wu B, Sun H, Li D, Huang J, Sun D (2022) Poly(lactic acid)/artificially cultured diatom frustules nanofibrous membranes with fast and controllable degradation rates for air filtration. Adv Compos Hybrid Mater 5(2):1221–1232. https://doi.org/10.1007/s42114-022-00474-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan H, Zhao S, Ali SE, Zheng S, Alanazi AK, Wang R, Zhang H, Abo-Dief HM, Xu BB, Algadi H, Li H, Wasnik P, Guo Z, Tang H (2023) Perfluorosulfonic acid proton exchange membrane with double proton site side chain for high-performance fuel cells at low humidity. J Mater Sci Technol 166:155–163. https://doi.org/10.1016/j.jmst.2023.03.049

    Article  CAS  Google Scholar 

  32. Bi X, Li M, Zhou G, Liu C, Huang R, Shi Y, Xu BB, Guo Z, Fan W, Algadi H, Ge S (2023) High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res 16(5):7696–7709. https://doi.org/10.1007/s12274-023-5586-1

    Article  CAS  Google Scholar 

  33. Yin Z, Peng H, Wei X, Zhou H, Gong J, Huai M, Xiao L, Wang G, Lu J, Zhuang L (2019) An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ Sci 12(8):2455–2462. https://doi.org/10.1039/c9ee01204d

    Article  CAS  Google Scholar 

  34. Liu Z, Yang H, Kutz R, Masel RI (2018) CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J Electrochem Soc 165(15):J3371–J3377. https://doi.org/10.1149/2.0501815jes

    Article  CAS  Google Scholar 

  35. Blommaert MA, Sharifian R, Shah NU, Nesbitt NT, Smith WA, Vermaas DA (2021) Orientation of a bipolar membrane determines the dominant ion and carbonic species transport in membrane electrode assemblies for CO2 reduction. J Mater Chem Mater 9(18):11179–11186. https://doi.org/10.1039/d0ta12398f

    Article  CAS  Google Scholar 

  36. Yang K, Li M, Subramanian S, Blommaert MA, Smith WA, Burdyny T (2021) Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett 6(12):4291–4298. https://doi.org/10.1021/acsenergylett.1c02058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wheeler DG, Mowbray BAW, Reyes A, Habibzadeh F, He J, Berlinguette CP (2020) Quantification of water transport in a CO2 electrolyzer. Energy Environ Sci 13(12):5126–5134. https://doi.org/10.1039/d0ee02219e

    Article  CAS  Google Scholar 

  38. Krödel M, Carter BM, Rall D, Lohaus J, Wessling M, Miller DJ (2020) Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Appl Mater Interfaces 12(10):12030–12042. https://doi.org/10.1021/acsami.9b21415

    Article  CAS  PubMed  Google Scholar 

  39. Dischinger SM, Gupta S, Carter BM, Miller DJ (2019) Transport of neutral and charged solutes in imidazolium-functionalized poly(phenylene oxide) membranes for artificial photosynthesis. Ind Eng Chem Res 59(12):5257–5266. https://doi.org/10.1021/acs.iecr.9b05628

    Article  CAS  Google Scholar 

  40. Li J, Li J, Cao Z, Zhang B, Zhang X, Liu X, Liu T, Zhang Y (2023) Enhanced OH – conductivity and stability of polybenzimidazole membranes for electrocatalytic CO2 reduction via grafting and crosslinking strategies. J Membr Sci. https://doi.org/10.1016/j.memsci.2023.121985

    Article  Google Scholar 

  41. Wang C, Mo B, He Z, Shao Q, Pan D, Wujick E, Guo J, Xie X, Xie X, Guo Z (2018) Crosslinked norbornene copolymer anion exchange membrane for fuel cells. J Membr Sci 556:118–125. https://doi.org/10.1016/j.memsci.2018.03.080

    Article  CAS  Google Scholar 

  42. Cao D, Yang F, Sheng W, Zhou Y, Zhou X, Lu Y, Nie F, Li N, Pan L, Li Y (2022) Polynorbornene-based anion exchange membranes with hydrophobic large steric hindrance arylene substituent. J Membr Sci. https://doi.org/10.1016/j.memsci.2021.119938

    Article  Google Scholar 

  43. Du X, Zhang H, Yuan Y, Wang Z (2021) Constructing micro-phase separation structure to improve the performance of anion-exchange membrane based on poly(aryl piperidinium) cross-linked membranes. J Power Sources. https://doi.org/10.1016/j.jpowsour.2020.229429

    Article  Google Scholar 

  44. Song W, Liang X, Zhang Y, Zhu Y, Zhang F, Bai Y, Li M, Zhang H, Wei C, Liu X, Wu L, Ge X, Xu T (2022) Hydrogen bonding assisted OH – transport under low humidity for rapid start-up in AEMFCs. J Membr Sci. https://doi.org/10.1016/j.memsci.2022.120303

    Article  Google Scholar 

  45. Li L, Zhang N, Wang J-A, Ma L, Bai L, Zhang A, Chen Y, Hao C, Yan X, Zhang F, He G (2022) Stable alkoxy chain enhanced anion exchange membrane and its fuel cell. J Membr Sci. https://doi.org/10.1016/j.memsci.2021.120179

    Article  Google Scholar 

  46. Lu X, You W, Peltier CR, Coates GW, Abruña HD (2023) Influence of ion-exchange capacity on the solubility, mechanical properties, and mass transport of anion-exchange ionomers for alkaline fuel cells. ACS Appl Energy Mater 6(2):876–884. https://doi.org/10.1021/acsaem.2c03210

    Article  CAS  Google Scholar 

  47. Xiao Y, Ma Q, Shen X, Wang S, Xiang J, Zhang L, Cheng P, Du X, Yin Z, Tang N (2022) Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane. J Power Sources. https://doi.org/10.1016/j.jpowsour.2022.231218

    Article  Google Scholar 

  48. Min K, Lee Y, Choi Y, Kwon OJ, Kim T-H (2022) High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS. J Membr Sci. https://doi.org/10.1016/j.memsci.2022.121071

    Article  Google Scholar 

  49. Yang Z, Zhang M, Zhao Z, Lan W, Zhang X, Fan M (2022) Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: improving ionic conductivity and power density. Int J Hydrog Energy 47(41):18122–18138. https://doi.org/10.1016/j.ijhydene.2022.03.269

    Article  CAS  Google Scholar 

  50. Chen S, Bai L, Wang X, Li H, Xu BB, Algadi H, Guo Z (2024) Effect of hydrophobic nano-silica/β-nucleating agent on the crystallization behavior and mechanical properties of polypropylene random copolymers. Polym Int 73:108–118. https://doi.org/10.1002/pi.6575

    Article  CAS  Google Scholar 

  51. Lan D, Wang Y, Wang Y, Zhu X, Li H, Guo X, Ren J, Guo Z, Wu G (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 651:494–503. https://doi.org/10.1016/j.jcis.2023.08.019

    Article  CAS  PubMed  Google Scholar 

  52. Qin Z, Zhao G, Zhang Y, Gu Z, Tang Y, Aladejana JT, Ren J, Jiang Y, Guo Z, Peng X, Zhang X, Xu BB, Chen T (2023) A simple and effective physical ball-milling strategy to prepare super-tough and stretchable PVA@MXene@PPy hydrogel for flexible capacitive electronics. Small 19(45):2303038. https://doi.org/10.1002/smll.202303038

    Article  CAS  Google Scholar 

  53. Fei B, Wang D, AlMasoud N, Yang H, Yang J, Alomar TS, Puangsin B, Xu BB, Algadi H, El-Bahy ZM, Guo Z, Shi Z (2023) Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. Int J Biol Macromol 249:126018. https://doi.org/10.1016/j.ijbiomac.2023.126018

    Article  CAS  PubMed  Google Scholar 

  54. Yu X, Wu Z, Weng L, Jiang D, Algadi H, Qin Z, Guo Z, Xu BB (2023) Flexible strain sensor enabled by carbon nanotubes-decorated electrospun TPU membrane for human motion monitoring. Adv Mater Interfaces 10(11):2202292. https://doi.org/10.1002/admi.202202292

    Article  Google Scholar 

  55. Wang R, Wang Y, Mao S, Hao X, Duan X, Wen Y (2021) Different morphology MoS2 over the g-C3N4 as a boosted photo-catalyst for pollutant removal under visible-light. J Inorg Organomet Polym Mater 31(1):32–42. https://doi.org/10.1007/s10904-020-01626-2

    Article  CAS  Google Scholar 

  56. Lu Y, Pan X, Li N, Hu Z, Chen S (2020) Improved performance of quaternized poly(arylene ether ketone)s/graphitic carbon nitride nanosheets composite anion exchange membrane for fuel cell applications. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144071

    Article  Google Scholar 

  57. Peckham TJ, Holdcroft S (2010) Structure-morphology‐property relationships of non‐perfluorinated proton‐conducting membranes. Adv Mater 22(42):4667–4690. https://doi.org/10.1002/adma.201001164

    Article  CAS  PubMed  Google Scholar 

  58. Bai H, Wang H, Zhang J, Wu C, Zhang J, Xiang Y, Lu S (2018) Simultaneously enhancing ionic conduction and mechanical strength of poly(ether sulfones)-poly(vinyl pyrrolidone) membrane by introducing graphitic carbon nitride nanosheets for high temperature proton exchange membrane fuel cell application. J Membr Sci 558:26–33. https://doi.org/10.1016/j.memsci.2018.04.039

    Article  CAS  Google Scholar 

  59. Chang C, Fu Y, Hu M, Wang C, Shan G, Zhu L (2013) Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl Catal B. https://doi.org/10.1016/j.apcatb.2013.05.044

    Article  Google Scholar 

  60. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401. https://doi.org/10.1021/la900923z

    Article  CAS  PubMed  Google Scholar 

  61. Ji H, Fei T, Zhang L, Yan J, Fan Y, Huang J, Song Y, Man Y, Tang H, Xu H, Li H (2018) Synergistic effects of MoO2 nanosheets and graphene-like C3N4 for highly improved visible light photocatalytic activities. Appl Surf Sci 457:1142–1150. https://doi.org/10.1016/j.apsusc.2018.06.134

    Article  CAS  Google Scholar 

  62. Tian J, Zhang L, Fan X, Zhou Y, Wang M, Cheng R, Li M, Kan X, Jin X, Liu Z, Gao Y, Shi J (2016) A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity. J Mater Chem A 4(36):13814–13821. https://doi.org/10.1039/c6ta04297j

    Article  CAS  Google Scholar 

  63. Du Y, Gao L, Hu L, Di M, Yan X, An B, He G (2020) The synergistic effect of protonated imidazole-hydroxyl-quaternary ammonium on improving performances of anion exchange membrane assembled flow batteries. J Membr Sci. https://doi.org/10.1016/j.memsci.2020.118011

    Article  Google Scholar 

  64. Zhang N, Li X, Li P, Tang S (2023) Guanidinium cationic covalent organic nanosheets-based anion exchange composite membrane for fuel cells. Int J Hydrog Energy 48(66):25972–25983. https://doi.org/10.1016/j.ijhydene.2023.03.332

    Article  CAS  Google Scholar 

  65. Yin C, Li J, Zhou Y, Zhang H, Fang P, He C (2018) Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl Mater Interfaces 10(16):14026–14035. https://doi.org/10.1021/acsami.8b01513

    Article  CAS  PubMed  Google Scholar 

  66. Moore T, Xia X, Baker SE, Duoss EB, Beck VA (2021) Elucidating mass transport regimes in gas diffusion electrodes for CO2 electroreduction. ACS Energy Lett 6(10):3600–3606. https://doi.org/10.1021/acsenergylett.1c01513

    Article  CAS  Google Scholar 

  67. Wei C, Yu W, Wu L, Ge X, Xu T (2022) Physically and chemically stable anion exchange membranes with hydrogen-bond Induced Ion conducting channels. Polymers. https://doi.org/10.3390/polym14224920

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lin C, Liu X, Yang Q, Wu H, Liu F, Zhang Q, Zhu A, Liu Q (2019) Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chain-type polymer AEMs. J Membr Sci 585:90–98. https://doi.org/10.1016/j.memsci.2019.04.066

    Article  CAS  Google Scholar 

  69. Wang B, Zhang H-R, Huang C, Xiong L, Luo J, Chen X-D (2017) Study on non-isothermal crystallization behavior of isotactic polypropylene/bacterial cellulose composites. RSC Adv 7(67):42113–42122. https://doi.org/10.1039/C7RA07731A

    Article  CAS  Google Scholar 

  70. Wang B, Lin F-H, Zhao Y-Y, Li X-Y, Liu Y-C, Li J-B, Han X-J, Liu S-X, Ji X-R, Luo J (2019) Isotactic polybutene-1/bamboo powder composites with excellent properties at initial stage of molding. Polymers 11(12):1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang B, Mao S, Lin F, Zhang M, Zhao Y, Zheng X, Wang H, Luo J (2021) Interfacial compatibility on the crystal transformation of isotactic poly (1-Butene)/herb residue composite. Polymers 13(10):1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang B, Nie K, Xue X-R, Lin F-H, Li X-Y, Xue Y-B, Luo J (2018) Preparation of maleic anhydride grafted polybutene and its application in isotactic polybutene-1/microcrystalline cellulose composites. Polymers 10(4):393.fgg

    Article  Google Scholar 

  73. Wang B, Lin F-H, Li X-Y, Zhang Z-W, Xue X-R, Liu S-X, Ji X-R, Yu Q, Yuan Z-Q, Chen X-D, Luo J (2018) Isothermal crystallization and rheology properties of isotactic polypropylene/bacterial cellulose composite. Polymers 10(11):1284

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Shanxi Key Laboratory of Efficient Hydrogen Storage & Production Technology, Shanxi Science and Technology Innovation Talent Team (202304051001031 and 202204051001011), and the Deanship of Scientific Research at Northern Border University, Arar, KSA (NBU-FPEJ-2024-2193-04), for funding this research work.

Funding

The work is financially supported by the National Key R&D Program of China (Project No. 2021YFE0104700).

Author information

Authors and Affiliations

Authors

Contributions

Longzhi Tong: investigation, conceptualization, data analysis, writing and original draft. Limin Zhang: investigation and testing. Saad Melhi: supervision. Dalal A. Alshammari: supervision. Mohamed Kallel: supervision. Zhichao Zheng: investigation and testing. Jie Yang: review and editing; Chao Wang: supervision, review and editing

Corresponding authors

Correspondence to Jie Yang or Chao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 428 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Zhang, L., Melhi, S. et al. Electrochemical reduction of CO2 by graphitized carbon nitride composite anion exchange membranes: potential for high CO selectivity. Adv Compos Hybrid Mater 7, 80 (2024). https://doi.org/10.1007/s42114-024-00891-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00891-w

Keywords

Navigation