Skip to main content
Log in

Cation substitution for enhanced pseudocapacitance performance of spinel bimetallic sulfides porous nanowires for increased energy storage

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The utilization of cation substitution presents a prospective approach to manipulate the structural characteristics and enhance the electrochemical functionality of spinel cobaltous sulfide (Co3S4). However, the underlying mechanism behind the impact of distinct cation substitutions on this phenomenon remains inadequately elucidated. In this study, we perform a thorough assessment to elucidate the influence of replacing cations on the pseudocapacitive properties of porous nanowires made of spinel bimetallic sulfide (MexCo3-xS4; Me=Mn, Ni, Cu, and Co). One of the top competitors, NiCo2S4, demonstrates a significant specific capacitance of 1032.7 F g−1 at a current density of 2 A g−1. Furthermore, it demonstrates an impressive capacitance retention rate of 92.1% after undergoing 8000 cycles. Moreover, the use of NiCo2S4 and AC as the anode and cathode in the hybrid supercapacitor (HSC) lead to a significant energy density of 49.3 Wh kg−1 at 1600 W kg−1, validating the effectiveness of the prepared porous nanowire-like NiCo2S4 as an appropriate substance for energy storage systems. Density functional theory (DFT) confirms that the substitution of cation can stimulate the electrochemical activity of Co, facilitate stronger inter-element interactions, and synergistically enhance the conductivity of cobalt-based bimetallic sulfides.

Graphical abstract

The regulatory mechanism of cation substitution on the pseudocapacitance performance of MexCo3-xS4 is elucidated through the integration of DFT calculations and electrochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Ma J, Xia J, Liang Z, Chen X, Du Y, Yan C (2021) Layered double hydroxide hollowcages with adjustable layer spacing for high performance hybrid supercapacitor. Small 17:2104423

    Article  CAS  Google Scholar 

  2. Shao H, Wu Y-C, Lin Z, Taberna P-L, Simon P (2020) Nanoporous carbon for electrochemical capacitive energy storage. Chem Soc Rev 49:3005–3039

    Article  CAS  PubMed  Google Scholar 

  3. Mohammadi Zardkhoshoui A, Hosseiny Davarani SS (2020) Boosting the energy density of supercapacitors by encapsulating a multi-shelled zinc-cobalt-selenide hollow nanosphere cathode and a yolk-double shell cobalt-iron-selenide hollow nanosphere anode in a graphene network. Nanoscale 12:12476–12489

    Article  CAS  PubMed  Google Scholar 

  4. Lee D, Kim KS, Yun JM, Yoon S-Y, Mathur S, Shin H-C, Kim KH (2019) Synergistic effects of dual nano-type electrode of NiCo-nanowire/NiMn-nanosheet for high-energy supercapacitors. J Alloy Compd 789:119–128

    Article  CAS  Google Scholar 

  5. Liu G, Wang B, Liu T, Wang L, Luo H, Gao T, Wang F, Liu A, Wang D (2018) 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J Mater Chem A 6:1822–1831

    Article  CAS  Google Scholar 

  6. Randive SG, Lokhande BJ (2023) Spray pyrolyzed hydrophilic nickel oxide electrodes with nano-granular morphology for a symmetric supercapacitor device. J Alloy Compd 944:169046

    Article  CAS  Google Scholar 

  7. Khavale SV, Lokhande BJ (2017) Electrochemical performance of potentio-dynamically deposited Co3O4 electrodes: influence of annealing temperature. J Mater Sci Mater Electron 28:5106–5115

    Article  CAS  Google Scholar 

  8. Ambare RC, Khavale SV, Nakate UT, Khanvikar MB, Lokhande BJ (2021) Electrochemical investigations of spray pyrolyzed ruthenium incorporated Co3O4 electrodes prepared via aqueous route. Colloid Surface A 615:126215

    Article  CAS  Google Scholar 

  9. Gao R, Zhang Q, Soyekwo F, Lin C, Lv R, Qu Y, Chen M, Zhu A, Liu Q (2017) Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochim Acta 237:94–101

    Article  CAS  Google Scholar 

  10. Yang Y, Peng K, Deng Y, Zhao Y, Ai J, Min X, Hu M, Huang S, Yu L (2022) The synthesis of nickel sulfide deposited with nitrogen-doped carbon quantum dots as advanced electrode materials for supercapacitors. J Mater Sci 57:14052–14064

    Article  CAS  Google Scholar 

  11. De S, Acharya S, Maity CK, Sahoo S, Nayak GC (2022) Nayak, MXene (Ti3C2Tx)-/Amine-functionalized graphene-supported self-assembled Co9S8 nanoflower for ultrastable hybrid supercapacitor. Ind Eng Chem Res 61:7727–7738

    Article  CAS  Google Scholar 

  12. Xiong W, Hu K, Li Z, Jiang Y, Li Z, Li Z, Wang X (2019) A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy 66:104149

    Article  CAS  Google Scholar 

  13. Wen J, Li S, Li B, Song Z, Wang H, Xiong R, Fang G (2015) Synthesis of three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high performance supercapacitor application. J Power Source 284:279–286

    Article  CAS  Google Scholar 

  14. Zheng X, Jiang J, Bi T, Jin F, Li M (2021) FeCo2S4@Ni@graphene nanocomposites with rich defects induced by heterointerface engineering for high-performance supercapacitors. ACS Appl Energy Mater 4:3288–3296

    Article  CAS  Google Scholar 

  15. Li C, Balamurugan J, Nguyen DC, Kim NH, Lee JH (2020) Hierarchical manganese-nickel sulfide nanosheet arrays as an advanced electrode for all-solid-state asymmetric supercapacitors. ACS Appl Mater Interfaces 12:21505–21514

    Article  CAS  PubMed  Google Scholar 

  16. Yang X, He X, Li Q, Sun J, Lei Z, Liu Z-H (2021) 3D hierarchical NiCo2S4 nanoparticles/carbon nanotube sponge cathode for highly compressible asymmetric supercapacitors. Energy Fuels 35:3449–3458

    Article  CAS  Google Scholar 

  17. Thangavel R, Ganesan BK, Thangavel V, Yoon W-S, Lee Y-S (2021) Emerging materials for sodium-ion hybrid capacitors: a brief review. ACS Appl Energy Mater 4:13376–13394

    Article  CAS  Google Scholar 

  18. Poudel MB, Kim AA, Lohani PC, Yoo DJ, Kim HJ (2023) Assembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitor. J Energy Storage 60:106713

    Article  Google Scholar 

  19. Poudel MB, Logeshwaran N, Prabhakaran S, Kim AR, Kim DH, Yoo DJ (2024) Low-cost hydrogen production from alkaline/seawater over a single-step synthesis of Mn3Se4-NiSe core-shell nanowire arrays. Adv Mater 36:2305813

    Article  CAS  Google Scholar 

  20. Chen Y, Liu T, Zhang L, Yu J (2019) NiCo2S4 nanotubes anchored 3D nitrogen-doped graphene framework as electrode material with enhanced performance for asymmetric supercapacitors. ACS Sustainable Chem Eng 7:11157–11165

    Article  CAS  Google Scholar 

  21. Chen M, Zhang Y, Xing L, Liao Y, Qiu Y, Yang S, Li W (2017) Morphology-conserved transformations of metal-based precursors to hierarchically porous micro-/nanostructures for electrochemical energy conversion and storage. Adv Mater 29:1607015

    Article  Google Scholar 

  22. Poudel MB, Kim AR, Ramakrishan S, Logeshwaran N, Ramasamy SK, Kim HJ, Yoo DJ (2022) Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos B Eng 247:110339

    Article  CAS  Google Scholar 

  23. Du N, Xu Y, Zhang H, Yu J, Zhai C, Yang D (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320–3324

    Article  CAS  PubMed  Google Scholar 

  24. Yang Z-Z, Zhou Z-L, Li C-W, Ma P-K, Wang C, Wang H-Y (2021) ZnCo2O4 nanorods coated with annealed polypyrrole/poly(vinylalcohol) composites as anode materials for lithium-ion batteries. ACS Appl Nano Mater 4:4496–4503

    Article  CAS  Google Scholar 

  25. Pu J, Cui F, Chu S, Wang T, Sheng E, Wang Z (2013) Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustainable Chem Eng 2:809–815

    Article  Google Scholar 

  26. Zhang R, Hu Z, Cheng S, Ke W, Ning T, Wu J, Fu X, Zhu G (2021) Molecular precursor route to CuCo2S4 nanosheets: a high-performance pre-catalyst for oxygen evolution and its application in Zn-air batteries. Inorg Chem 60:6721–6730

    Article  CAS  PubMed  Google Scholar 

  27. Huang Y, Cui F, Bao J, Zhao Y, Lian J, Liu T, Li H (2019) MnCo2S4/FeCo2S4 “lollipop” arrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors. J Mater Chem A 7:20778–20789

    Article  CAS  Google Scholar 

  28. Poudel MB, Ojha GP, Kim AA, Kim HJ (2022) Manganese-doped tungsten disulfide microcones as binder-free electrode for high performance asymmetric supercapacitor. J Energy Storage 47:103674

    Article  Google Scholar 

  29. Li W, He L, Zhang J, Li B, Chen Q, Zhong Q (2019) Anchoring spinel MnCo2S4 on carbon nanotubes as efficient counter electrodes for quantum dot sensitized solar cells. J Phys Chem C 123:21866–21872

    Article  CAS  Google Scholar 

  30. Fu Z, He H, Chen S, Wang Y, Ma M, Ye M (2020) Mn-Co-S-Se nanowires for energy storage and conversion. ACS Appl Nano Mater 3:7428–7437

    Article  CAS  Google Scholar 

  31. Song W, Wang G, Zhao D, Zhou Y, Ding Y, Tan C, Tang S, Dong H, Meng X (2019) Achieving rich mixed-valence polysulfide/carbon nanotube films toward ultrahigh volume energy density and largely deformable pseudocapacitors. ACS Appl Mater Interfaces 11:25271–25282

    Article  CAS  PubMed  Google Scholar 

  32. Gai Y, Xie T, Shang Y, Su L, Wang J, Gong L (2020) Self-sacrificing template-derived hollow-structured NiCo2S4 spheres with highly efficient supercapacitance performance. Energy Fuels 34:10203–10210

    Article  CAS  Google Scholar 

  33. Liu S, Ni D, Li H-F, Hui KN, Ouyang C-Y, Jun SC (2018) Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M=Mn, Ni, Cu, and Co). J Mater Chem A 6:10674–10685

    Article  CAS  Google Scholar 

  34. Lim YV, Huang S, Wu Q, Kong D, Wang Y, Zhu Y, Wang Y, Wang Y, Liu H, Dou S, Ang LK, Yang HY (2020) Super kinetically pseudocapacitive MnCo2S4 nanourchins toward high-rate and highly stable sodium-ion storage. Adv Funct Mater 30:1909702

    Article  CAS  Google Scholar 

  35. Li S, Hua M, Yang Y, Zheng X, Huang W, Si P, Ci L, Lou J (2021) Phosphorous-doped bimetallic sulfides embedded in heteroatom-doped carbon nanoarrays for flexible all-solid-state supercapacitors. Sci China Mater 64:2439–2453

    Article  CAS  Google Scholar 

  36. Wang H, Liang M, He Z, Guo Z, Zhao Y, Li K, Song W, Zhang Y, Zhang X, Zhao Y, Miao Z (2022) Rational design of porous NiCo2S4 nanotubes for hybrid supercapacitor. Curr Appl Phys 35:7–15

    Article  Google Scholar 

  37. Zhai R, Xiao Y, Ding T, Wu Y, Chen S, Wei W (2020) Construction of NiCo2S4 heterostructure based on electrochemically exfoliated graphene for high-performance hybrid supercapacitor electrode. J Alloy Compd 845:156164

    Article  CAS  Google Scholar 

  38. Li J, Zou Y, Li B, Xu F, Chu H, Qiu S, Zhang J, Sun L, Xiang C (2021) Polypyrrole-wrapped NiCo2S4 nanoneedles as an electrode material for supercapacitor applications. Ceram Int 47:16562–16569

    Article  CAS  Google Scholar 

  39. Liu T, Zheng Y, Zhao W, Cui L, Liu J (2019) Uniform generation for NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. J Colloid Interface Sci 556:743–752

    Article  CAS  PubMed  Google Scholar 

  40. Kong W, Lu C, Zhang W, Pu J, Wang Z (2015) Homogeneous core-shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A 3:12452–12460

    Article  CAS  Google Scholar 

  41. Li Z, Wu L, Wang L, Gu A, Zhou Q (2017) Nickel cobalt sulfide nanosheets uniformly anchored on porous graphitic carbon nitride for supercapacitors with high cycling performance. Electrochim Acta 231:617–625

    Article  CAS  Google Scholar 

  42. Ren X, Du Y, Song M, Chen Y, Zhou Y, Ma F, Wan J (2019) Facile preparation of mesoporous NiCo2S4 microaggregates constructed by nanoparticles via puffing NiCo2O4 cubes for high performance asymmetric supercapacitors. J Alloy Compd 806:1481–1490

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52072063), the research start-up fund of Foshan Graduate School of innovation of Northeastern University, and the Scientific Research Project of Foshan Talents (200076622003).

Author information

Authors and Affiliations

Authors

Contributions

S.X.: investigation, data curation, writing-original draft, writing-review and editing. M.Z.: methodology, supervision, validation, project administration. X.Z.: data curation, writing-review and editing, formal analysis. X.X.: data curation, visualization. X.S.: methodology, supervision, writing-review and editing. Z.L.: data curation, visualization, writing-review and editing.

Corresponding authors

Correspondence to Xiang Zhao, Mu Zhang or Zhengtang Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12724 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Zhao, X., Zhang, M. et al. Cation substitution for enhanced pseudocapacitance performance of spinel bimetallic sulfides porous nanowires for increased energy storage. Adv Compos Hybrid Mater 7, 67 (2024). https://doi.org/10.1007/s42114-024-00866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00866-x

Keywords

Navigation