Skip to main content
Log in

Polyacrylonitrile/multi-walled carbon nanotubes/polyurethane electrospun nanofiber membranes for sports equipment

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The polyacrylonitrile/multi-walled carbon nanotubes nanofiber membranes with different orientations were prepared from acidified multi-walled carbon nanotubes (MWCNTs) and polyacrylonitrile (PAN) by innovative electrospun and hot stretching methods. It was found that PAN/MWCNTs has the best tensile properties when the content of carbon nanotubes was 0.5%, which was about 24% higher than that of pure PAN nanofiber membrane. The PAN/MWCNTs nanofiber membrane and thermoplastic polyurethane (TPU) composite was prepared with immersion method. MWCNTs can enhance the tensile properties of PAN nanofiber membrane and the thermoplastic composite materials. The modulus and tensile strength of the composite increase, while the elongation at break decreases with the increasing of orientation and hot stretching processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yin M (2012) Preparation and properties of nylon-6 nanofibers. Master’s Thesis, Shandong University of Science and Technology, China

  2. Zhang L (2007) Small size and large effect of nanotechnology. Hi-Tech Ind 3:28–29

    CAS  Google Scholar 

  3. Yang S, Shi C, Qu KQ et al (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett 33:2063–2074

    Article  Google Scholar 

  4. Li FS, Wu NN, Hideo KH et al (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett 15:220–234

    Article  CAS  Google Scholar 

  5. Wang CJ, Liu XL, Yang TH et al (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144–124175

    Article  CAS  Google Scholar 

  6. Li S, He W, Hu M et al (2009) Research progress of electrostatic spinning. Synthetic Fiber Ind 32:44–47

    CAS  Google Scholar 

  7. Ruan JC, Chang ZX, Rong HW et al (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208–118220

    Article  CAS  Google Scholar 

  8. Lin ZT, Li X, Zhang H et al (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392

    Article  CAS  Google Scholar 

  9. Lan D, Wang Y, Wang YY et al (2023) Impact mechanisms of aggregation state reguation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 651:494–503

    Article  CAS  PubMed  Google Scholar 

  10. Huang A, Guo Y, Zhu YW et al (2023) Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanoparticles electrospun membrane strain sensors by multi-conductive network. Adv Compos Hybrid Mater 6:101

    Article  CAS  Google Scholar 

  11. Liu ZZ, Li GJ, Qin Q et al (2021) Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv Compos Hybrid Mater 4:1215–1225

    Article  CAS  Google Scholar 

  12. Li FS, Li QY, Kimura H et al (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. Mater Sci Technol 148:250–259

    Article  CAS  Google Scholar 

  13. Chen SQ, Bai LH, Wang XL et al (2023) Effect of hydrophobic nano-silica/β-nucleating agents on the crystallization behavior and mechanical properties of polypropylene random copolymers. Polym Int 73:108–118

    Article  Google Scholar 

  14. Cheng BW, Li YX, Li H et al (2021) An adhesive and self-healable hydrogel with high stretchability and compressibility for human motion detection. Compos Sci Technol 213:108948–108956

    Article  CAS  Google Scholar 

  15. Yuan GY, Wan T, BaQais A et al (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101–118110

    Article  CAS  Google Scholar 

  16. Meng XG, Li YC, AlMasoud N et al (2023) Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272:125856–125866

    Article  CAS  Google Scholar 

  17. Gao FJ, Liu Y, Jiao CY et al (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci 61:2677–2687

    Article  CAS  Google Scholar 

  18. Liu N, Yang J (2006) Progress in research and application of electrospun nanofibers. China Synthetic Fiber Ind 3:46–49

    Google Scholar 

  19. Yang X, Xu C, Yuan B et al (2011) A novel electrochemiluminescence sensor based on Tris(2,2′-bipyridyl)ruthenium(II) immobilized in Nafion/electrospun carbon nanofibers composite films. Chinese J Anal Chem 39:1233–1237

    Article  CAS  Google Scholar 

  20. Sun Z, Qi HJ, Chen MH et al (2022) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng Sci 18:59–74

    CAS  Google Scholar 

  21. Zhang HT, Ding X, Wang ST et al (2022) Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Eng Sci 18:320–328

    CAS  Google Scholar 

  22. Song Y, Sun Z, Xu L et al (2017) Preparation and characterization of highly aligned carbon nanotubes/polyacrylonitrile composite nanofibers. Polymers 9:6–7

    Article  Google Scholar 

  23. Niu H, Wang Z, You T et al (2014) Preparation, structure and properties of carbon nanotubes/polyurethane composites. Light Text Ind Tech 3:11–13

    Google Scholar 

  24. Chu X (2012) Preparation method and properties of composite membranes based on carbon nanotubes/polyester. Master’s Thesis, Donghua University, China

  25. Jiang X (2012) Preparation and characterization of polyaniline/carbon nanotube electrospun thin membranes. Master’s Thesis, Harbin Institute of Technology, China

  26. Li Y (2010) Study on properties of thermoplastic polyurethane elastomers. Master’s Thesis, Beijing University of Chemical Technology, China

  27. Yang W, Qin X (2015) Research and application of thermoplastic polyurethane elastomer (TPU). Plast Manu 7:71–75

    Google Scholar 

  28. Zhang Z, Liu MX, Ibrahim MM et al (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066

    Article  CAS  Google Scholar 

  29. Gong XY, Liu YY, Mohamed M et al (2023) Activation of inert triethylene tetramine-cured epoxy by sub-critical water decomposition. React Funct Polym 193:105746–105760

    Article  CAS  Google Scholar 

  30. Iniyan S, Ren JN, Deshmukh S et al (2023) An overview of metal-organic framework based electrocatalysts: design and synthesis for electrochemical hydrogen evolution, oxygen evolution, and carbon dioxide reduction reactions. Chem Rec 23:1–21

    Article  Google Scholar 

  31. She LN, Zhao B, Yuan MY et al (2022) Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Adv Compos Hybrid Mater 5:3012–3022

    Article  CAS  Google Scholar 

  32. Jia SF, Song SF, Zhao XD et al (2021) Selective adsorption and separation of dyes from aqueous solution by a zirconium-based porous framework material. Appl Organomet Chem 5:6314–6324

    Article  Google Scholar 

  33. Shi GL, Yu F, Wang Y et al (2018) Facile synthesis of micro-mesoporous alumina-zirconia nanocrystals with tailoring texture. Chem Phys Lett 709:41–45

    Article  CAS  Google Scholar 

  34. Jiang XM, Chen YJ, Meng XK (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470

    Article  CAS  Google Scholar 

  35. Li T, Wei HG, Zhang YY et al (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:320678–320690

    Article  Google Scholar 

  36. Zheng MQ, Zhao XD, Wang KK et al (2019) Highly efficient removal of Cr(VI) on a stable metal–organic framework based on enhanced H-bond interaction. Ind Eng Chem Res 58:23330–23337

    Article  CAS  Google Scholar 

  37. Bhattarai SR, Bhattarai N, Yi HK et al (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602

    Article  CAS  PubMed  Google Scholar 

  38. Barnes CP, Sell SA, Boland ED et al (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Dliv Rev 59:1413–1433

    Article  CAS  Google Scholar 

  39. Yang F, Murugan R, Wang S et al (2005) Electrospinning of nano/microscale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603

    Article  CAS  PubMed  Google Scholar 

  40. Lee JK, Chen N, Peng S et al (2018) Polymer-based composites by electrospinning: preparation and functionalization with nanocarbons. Prog Polym Sci 86:51–64

    Article  Google Scholar 

  41. Bavatharani C, Muthusankar E, Mohammad WS et al (2020) Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review. Synth Met 10:5–7

    Google Scholar 

  42. Wang L, Liu F (2021) Application of carbon fiber reinforced plastics in sports equipment. System Fiber China 11:1–2

    Google Scholar 

  43. Lu M, Pedro JA, Jyotsna R et al (2021) Stabilization of polyacrylonitrile fibers with carbon nanotubes. Polym Degrad Stab 188:3–5

    Article  Google Scholar 

  44. Hou CX, Yang WY, Kimura H et al (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. Mater Sci Technol 142:185–195

    Article  CAS  Google Scholar 

  45. Zhang K, Liu XY, Bi JJ et al (2023) Bimetallic NiCe/Lay catalysts facilitated co-pyrolysis of oleic acid and methanol for efficiently preparing anaerobic hydrocarbon fuels. New J Chem 47:18272–18284

    Article  CAS  Google Scholar 

  46. Kang FY, Jiang XN, Wang Y et al (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front 10:6045–6057

    Article  CAS  Google Scholar 

  47. Li X and Song D (2008) Preparation of polyvinylidene fluoride hollow nanofiber membrane by thermal-induced phase separation. Report, National Symposium on Membrane and Membrane Process, China, Oct

  48. Li M (2012) Preparation and structural properties of polyester nanofibers and their aggregates. Master’s Thesis, Donghua University, China

  49. Zhang H (2010) Effect of surface functional group characteristics of carbon nanotubes on polymer structure of propylene eyeball. Doctoral Thesis, Beijing University of Chemical Technology, China

  50. Qin Q (2016) Preparation and mechanical properties of polymer halloysite nanotubes composite nanofibers by electrospinning. Master’s Thesis, Yangzhou University, China

  51. Aqeel SM, Huang ZY, Jonathan Walton J et al (2018) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1:185–192

    Article  CAS  PubMed  Google Scholar 

  52. Soheila M, Yu D, Ian JD (2015) Recent progress in electrospun nanofibers: reinforcement effect and mechanical performance. J Polym Sci Pol Phys 53:1171–1212

    Article  Google Scholar 

Download references

Funding

The authors were financially supported by the National Natural Science Foundation of China (52063004), Guangxi Science and Technology Base and Talent Project (Guike AD20297016), International Joint Research Center for Biomass Materials (Southwest Forestry University) (2022-GH07) and the 111 Project (D21027), and Natural Science Foundation Guang Dong Province (2020B1515420001).

Author information

Authors and Affiliations

Authors

Contributions

Zhao Chunguan: methodology, formal analysis, writing—original draft. Zhu Xiufang: experiment, revise manuscript. Li Junhao: resources, visualization. Qi Wen: revise manuscript, funding acquisition. Zhao Yanzhi: validation. Xu Kaimeng: investigation. Yu Dingshan: supervision, funding acquisition. Li Ye: project administration. Zhou Juying: conceptualization, writing—review and editing, funding acquisition.

Corresponding authors

Correspondence to Yanzhi Zhao or Juying Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 15502 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhu, X., Li, J. et al. Polyacrylonitrile/multi-walled carbon nanotubes/polyurethane electrospun nanofiber membranes for sports equipment. Adv Compos Hybrid Mater 7, 44 (2024). https://doi.org/10.1007/s42114-024-00865-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00865-y

Keywords

Navigation