Skip to main content
Log in

Cadmium sulfide nanoparticles compositing with chitosan and metal-organic framework: Enhanced photostability and increased carbon dioxide reduction

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The utilization of photocatalytic enzyme-coupled systems is considered a promising solution to the solar energy conversion challenge, but it is hampered by its low cofactor regeneration efficiency. Herein, a biomimetic catalytic system was designed inspired by photosynthesis for cofactor regeneration and CO2 reduction. The Rh complexes were anchored in the core of metal-organic framework UiO67 and chitosan (CS) on the UiO67@Rh surface skillfully helped the in situ growth of CdS. In this core-shell nanoreactor, UiO67@Rh accepted the electrons produced by CdS for cofactor regeneration. CS acted as a bifunctional bio-scaffold to attach CdS and prevent CdS photocorrosion. Besides, CS spatially separated Rh complexes and CdS, preventing deactivation of Rh complexes by CdS and leakage of Rh complexes. Surprisingly, CS improved the photocatalytic activity and photostability of CdS, while other biomacromolecules did not have this function. The photocatalyst regeneration NADH cooperated with formate dehydrogenase (FDH) for CO2 reduction. The results showed that 0.72 mM formic acid was produced in 5 h (TOF = 0.14 mmol/mg/h), which was triple as much as in the system of UiO67@Rh@CdS and FDH. This cyclic process could be repeated up to 10 time cycles, where long-term stability of the system was observed and the active state of the enzymes was preserved. This study demonstrated a new and promising organometallic photocatalyst-based artificial cofactor regeneration system, paving the path for further research into the bespoke synthesis of fine chemicals and solar fuels from CO2 utilizing solar energy.

Graphical abstract

CdS nanoparticles compositing with chitosan and metal-organic frameworks for cofactor regeneration and CO2 reduction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and Supplementary materials.

References

  1. Kumar A, Daw P, Milstein D (2022) Homogeneous catalysis for sustainable energy: hydrogen and methanol economies, fuels from biomass, and related topics. Chem Rev 122(1):385–441. https://doi.org/10.1021/acs.chemrev.1c00412

    Article  CAS  PubMed  Google Scholar 

  2. Dong Z, Wang Y, Yang Q, Li D, Wu P (2023) Enhancing the compatibility of the amyloid-dye hybrid nanostructure for improved photo-biocatalysis. J Energy Chem 78:430–437. https://doi.org/10.1016/j.jechem.2022.12.040

    Article  CAS  Google Scholar 

  3. Lee SH, Choi DS, Kuk SK, Park CB (2018) Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int Ed 57(27):7958–7985. https://doi.org/10.1002/anie.201710070

    Article  CAS  Google Scholar 

  4. Tan X, Nielsen J (2022) The Integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 51(11):4763–4785. https://doi.org/10.1039/d2cs00309k

    Article  CAS  PubMed  Google Scholar 

  5. Sundaram S, Diehl C, Cortina NS, Bamberger J, Paczia N, Erb TJ (2021) A modular in vitro platform for the production of terpenes and polyketides from CO2. Angew Chem Int Ed 60(30):16420–16425. https://doi.org/10.1002/anie.202102333

    Article  CAS  Google Scholar 

  6. Li L, Ozden A, Guo S, Garci AdAFP, Wang C, Zhang M, Zhang J, Jiang H, Wang W, Dong H, Sinton D et al (2021) Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat Commun 12(1):5223. https://doi.org/10.1038/s41467-021-25573-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma Z, Legrand U, Pahija E, Tavares JR, Boffito DC (2021) From CO2 to formic acid fuel cells. Ind Eng Chem Res 60(2):803–815. https://doi.org/10.1021/acs.iecr.0c04711

    Article  CAS  Google Scholar 

  8. Miller M, Robinson WE, Oliveira AR, Heidary N, Kornienko N, Warnan J, Pereira IAC, Reisner E (2019) Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide. Angew Chem Int Ed 58(14):4601–4605. https://doi.org/10.1002/anie.201814419

    Article  CAS  Google Scholar 

  9. Nowak C, Pick A, Lommes P, Sieber V (2017) Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase: providing a regeneration system for artificial cofactors. ACS Catal 7(8):5202–5208. https://doi.org/10.1021/acscatal.7b00721

    Article  CAS  Google Scholar 

  10. Luan P, Li Y, Huang C, Dong L, Ma T, Liu J, Gao J, Liu Y, Jiang Y (2022) Design of de novo three-enzyme nanoreactors for stereodivergent synthesis of α-substituted cyclohexanols. ACS Catal 12(13):7550–7558. https://doi.org/10.1021/acscatal.2c02136

    Article  CAS  Google Scholar 

  11. Yang B, Li S, Mu W, Wang Z, Han X (2022) Light-harvesting artificial cells containing cyanobacteria for CO2 fixation and further metabolism mimicking. Small 19:2201305. https://doi.org/10.1002/smll.202201305

    Article  CAS  Google Scholar 

  12. Kuk SK, Singh RK, Nam DH, Singh R, Lee JK, Park CB (2017) Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew Chem Int Ed 56(14):3827–3832. https://doi.org/10.1002/anie.201611379

    Article  CAS  Google Scholar 

  13. Megarity CF, Siritanaratkul B, Heath RS, Wan L, Morello G, FitzPatrick SR, Booth RL, Sills AJ, Robertson AW, Warner JH, Turner NJ et al (2019) Electrocatalytic volleyball: rapid nanoconfined nicotinamide cycling for organic synthesis in electrode pores. Angew Chem Int Ed 58(15):4948–4952. https://doi.org/10.1002/anie.201814370

    Article  CAS  Google Scholar 

  14. Wang H, Chen J, Dong Q, Jia X, Li D, Wang J, Wang E (2022) Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH. Nano Res 15(6):5256–5261. https://doi.org/10.1007/s12274-022-4150-8

    Article  ADS  CAS  Google Scholar 

  15. Cheng Y, Shi J, Wu Y, Wang X, Sun Y, Cai Z, Chen Y, Jiang Z (2021) Intensifying electron utilization by surface-anchored Rh complex for enhanced nicotinamide cofactor regeneration and photoenzymatic CO2 reduction. Research 2021:1–11. https://doi.org/10.34133/2021/8175709

    Article  CAS  Google Scholar 

  16. Lee JM, Jin HB, Kim IY, Jo YK, Hwang JW, Wang KK, Kim MG, Kim YR, Hwang SJ (2015) A crucial role of Rh substituent ion in photoinduced internal electron transfer and enhanced photocatalytic activity of CdS-Ti(5.2-x)/6Rhx/2O2 nanohybrids. Small 11(41):5771–5780. https://doi.org/10.1002/smll.201501806

    Article  CAS  PubMed  Google Scholar 

  17. Cheng L, Xiang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy Environ Sci 11(6):1362–1391. https://doi.org/10.1039/c7ee03640j

    Article  CAS  Google Scholar 

  18. Nam DH, Lee SH, Park CB (2010) CdTe, CdSe, and CdS nanocrystals for highly efficient regeneration of nicotinamide cofactor under visible light. Small 6(8):922–926. https://doi.org/10.1002/smll.201000077

    Article  CAS  PubMed  Google Scholar 

  19. Xu HQ, Yang S, Ma X, Huang J, Jiang HL (2018) Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal 8(12):11615–11621. https://doi.org/10.1021/acscatal.8b03233

    Article  CAS  Google Scholar 

  20. Han HX, Tian LJ, Liu DF, Yu HQ, Sheng GP, Xiong Y (2022) Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems. J Am Chem Soc 144(14):6434–6441. https://doi.org/10.1021/jacs.2c00934

    Article  CAS  PubMed  Google Scholar 

  21. Boecker M, Micheel M, Mengele AK, Neumann C, Herberger T, Marchesi D’Alvise T, Liu B, Undisz A, Rau S, Turchanin A, Synatschke CV et al (2021) Rhodium-complex-functionalized and polydopamine-coated CdSe@CdS nanorods for photocatalytic NAD+ reduction. ACS Appl Nano Mater 4(12):12913–12919. https://doi.org/10.1021/acsanm.1c02994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang R, Zhu H, Yao J, Fu Y, Guan Y (2012) Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Appl Surf Sci 258(8):3513–3518. https://doi.org/10.1016/j.apsusc.2011.11.105

    Article  ADS  CAS  Google Scholar 

  23. Zhang Y, Zhou W, Jia L, Tan X, Chen Y, Huang Q, Shao B, Yu T (2020) Visible light driven hydrogen evolution using external and confined CdS: effect of chitosan on carriers separation. Appl Catal B Environ 277:119152. https://doi.org/10.1016/j.apcatb.2020.119152

    Article  CAS  Google Scholar 

  24. Zhang Y, Wei B, Liang H (2023) Rhodium-based MOF-on-MOF difunctional core-shell nanoreactor for NAD(P)H regeneration and enzyme directed immobilization. ACS Appl Mater Interfaces 15(2):3442–3454. https://doi.org/10.1021/acsami.2c18440

    Article  CAS  PubMed  Google Scholar 

  25. Pitman CL, Finster ONL, Miller AJM (2016) Cyclopentadiene-mediated hydride transfer from rhodium complexes. Chem Commun 52(58):9105–9108. https://doi.org/10.1039/C6CC00575F

    Article  CAS  Google Scholar 

  26. Lo HC, Buriez O, Kerr JB, Fish RH (1999) Regioselective reduction of NAD+ models with [Cp*Rh(bpy)H]+: structure-activity relationships and mechanistic aspects in the formation of the 1,4-NADH derivatives. Angew Chem Int Ed 38:1429–1432. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10%3c1429::AID-ANIE1429%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  27. Benseghir Y, Lemarchand A, Duguet M, Mialane P, Gomez-Mingot M, Roch-Marchal C, Pino T, Ha-Thi MH, Haouas M, Fontecave M, Dolbecq A et al (2020) Co-immobilization of a Rh catalyst and a keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: in depth structural characterization and photocatalytic properties for CO2 reduction. J Am Chem Soc 142(20):9428–9438. https://doi.org/10.1021/jacs.0c02425

    Article  CAS  PubMed  Google Scholar 

  28. Alqarni DS, Marshall M, Turner DR, Gengenbach TR, Chaffee AL (2021) Metal nanoparticles formed by thermal transformation of M-MIL140C (M=In, Rh, Pd). Micropor Mesopor Mat 324:111264.https://doi.org/10.1016/j.micromeso.2021.111264

    Article  CAS  Google Scholar 

  29. Chen J, Ouyang J, Chen W, Zheng Z, Yang Z, Liu Z, Zhou L (2022) Fabrication and adsorption mechanism of chitosan/Zr-MOF (UiO-66) composite foams for efficient removal of ketoprofen from aqueous solution. Chem Eng J 431:134045. https://doi.org/10.1016/j.cej.2021.134045

    Article  CAS  Google Scholar 

  30. Jia X, Zhang B, Chen C, Fu X, Huang Q (2021) Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydr Polym 253:117305. https://doi.org/10.1016/j.carbpol.2020.117305

    Article  CAS  PubMed  Google Scholar 

  31. Harish R, Nisha KD, Prabakaran S, Sridevi B, Harish S, Navaneethan M, Ponnusamy S, Hayakawa Y, Vinniee C, Ganesh MR (2020) Cytotoxicity assessment of chitosan coated CdS nanoparticles for bio-imaging applications. Appl Surf Sci 499:143817. https://doi.org/10.1016/j.apsusc.2019.143817

    Article  CAS  Google Scholar 

  32. Wu X, Wang S, Fang J, Chen H, Liu H, Li R (2022) Enhanced photocatalytic efficiency in visible-light-induced NADH regeneration by intramolecular electron transfer. ACS Appl Mater Interfaces 14(34):38895–38904. https://doi.org/10.1021/acsami.2c11174

    Article  CAS  PubMed  Google Scholar 

  33. Biswal Scheiner HS (2015) Hydrogen bonds involving sulfur: new insights from ab initio calculations and gas phase laser spectroscopy. Noncovalent Forces 19:15–45. https://doi.org/10.1007/978-3-319-14163-3_2

    Article  Google Scholar 

  34. Zhang L, Etienne M, Vilà N, Le TXH, Kohring GW, Walcarius A (2018) Electrocatalytic biosynthesis using a bucky paper functionalized by [Cp*Rh(bpy)Cl]+ and a renewable enzymatic layer. ChemCatChem 10(18):4067–4073. https://doi.org/10.1002/cctc.201800681

    Article  CAS  Google Scholar 

  35. Wei RB, Huang ZL, Gu GH, Wang Z, Zeng L, Chen Y, Liu ZQ (2018) Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl Catal B Environ 231:101–107. https://doi.org/10.1016/j.apcatb.2018.03.014

    Article  CAS  Google Scholar 

  36. Ruan M, Guo D, Jia Q (2021) A uniformly decorated and photostable polydopamine-organic semiconductor to boost the photoelectrochemical water splitting performance of CdS photoanodes. Dalton Trans 50(5):1913–1922. https://doi.org/10.1039/d0dt04056h

    Article  CAS  PubMed  Google Scholar 

  37. Hu Y, Hao X, Cui Z, Zhou J, Chu S, Wang Y, Zou Z (2020) Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl Catal B Environ 260:118131. https://doi.org/10.1016/j.apcatb.2019.118131

    Article  CAS  Google Scholar 

  38. Yadav RK, Baeg JO, Oh GH, Park NJ, Kong KJ, Kim J, Hwang DW, Biswas SK (2012) A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc 134(28):11455–11461. https://doi.org/10.1021/ja3009902

    Article  CAS  PubMed  Google Scholar 

  39. Yue X, Yi S, Wang R, Zhang Z, Qiu S (2017) Cobalt phosphide modified titanium oxide nanophotocatalysts with significantly enhanced photocatalytic hydrogen evolution from water splitting. Small 13(14):1603301. https://doi.org/10.1002/smll.201603301

    Article  CAS  Google Scholar 

  40. Burnett RW, Underwood AL (1968) A dimer of diphosphopyridine nucleotide. Biochemistry 7(10):3328–3333. https://doi.org/10.1021/bi00850a003

    Article  CAS  PubMed  Google Scholar 

  41. Gȩbicki J, Marcinek A, Zielonka J (2004) Transient species in the stepwise interconversion of NADH and NAD+. Acc Chem Res 37(6):379–386. https://doi.org/10.1021/ar030171j

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Shi J, Chen Y, Huo Q, Li W, Wu Y, Sun Y, Zhang Y, Wang X, Jiang Z (2020) Unraveling and manipulating of NADH oxidation by photogenerated holes. ACS Catal 10(9):4967–4972. https://doi.org/10.1021/acscatal.0c00471

    Article  CAS  Google Scholar 

  43. Ji X, Liu C, Wang J, Su Z, Ma G, Zhang S (2017) Integration of functionalized two-dimensional TaS2 nanosheets and an electron mediator for more efficient biocatalyzed artificial photosynthesis. J Mater Chem A 5(11):5511–5522. https://doi.org/10.1039/c7ta00002b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Zhang Xu’s research group for our support of photocatalytic instruments.

Funding

This study was funded by the National Key Research and Development Program of China (2021YFC2102800) and the National Natural Science Foundation of China (22078014).

Author information

Authors and Affiliations

Authors

Contributions

YZ: experimental design and planning, performing the experiments, writing the initial draft and revised manuscript. HL: ideas, oversight and leadership responsibility for the research activity planning and execution, revised the initial draft and funding acquisition.

Corresponding author

Correspondence to Hao Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8769 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liang, H. Cadmium sulfide nanoparticles compositing with chitosan and metal-organic framework: Enhanced photostability and increased carbon dioxide reduction. Adv Compos Hybrid Mater 7, 21 (2024). https://doi.org/10.1007/s42114-024-00837-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00837-2

Keywords

Navigation