Skip to main content

Advertisement

Log in

Highly thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) boron nitride nanosheets (BNNS), with exceptional thermoconductive properties and wide band gap, hold a great promise as candidate fillers for the preparation of the functional dielectric composites. However, the unsatisfactory dispersity in solvents and poor interfacial compatibility with the polymer matrix are still a great baffle for its practical applications. In the present study, we show that non-covalent functionalization of BNNS via polyvinylpyrrolidone (PVP) is a facile approach to optimizing their surface characteristics and facilitating the preparation of hybrid composites. The PVP functionalized BNNS (BNNS@PVP) can be dispersed stably in the aqueous solution for over 2 weeks. Composite films with ultrahigh thermal conductivity (~ 14.5 W m−1 K−1) are achieved solely by mixing with BNNS@PVP and one-dimensional (1D) aramid nanofibers (ANFs). Additionally, strong interfacial interactions are constructed between BNNS@PVP and ANFs, which further enables efficient stress transfer and charge dissipation through the 1D/2D configuration, contributing to outstanding tensile strength (~ 184 MPa) and high electric breakdown strength (~ 274 kV mm−1) for composite films. All these results demonstrate that surface modification of BNNS is a powerful tool for developing functional materials with multipurpose applications, including thermal management and high-voltage insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available from authors on request.

References

  1. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu BB, Murugadoss V et al (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater 5:1090. https://doi.org/10.1007/s42114-022-00438-x

    Article  CAS  Google Scholar 

  2. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB et al (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  CAS  Google Scholar 

  3. Fan G, Wang Z, Ren H, Liu Y, Fan R (2021) Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scr Mater 190:1. https://doi.org/10.1016/j.scriptamat.2020.08.027

    Article  CAS  Google Scholar 

  4. Wang T, Zhang G, Zhang B, Liu S, Li D, Liu C (2021) Oriented boron nitride nanosheet films for thermal management and electrical insulation in electrical and electronic equipment. ACS Appl Nano Mater 4:4153–4161. https://doi.org/10.1021/acsanm.1c00484

    Article  CAS  Google Scholar 

  5. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4:274–285. https://doi.org/10.1007/s42114-021-00221-4

    Article  CAS  Google Scholar 

  6. Vu MC, Kang H, Park PJ, Choi B-G, Paik J-W, Choi W-K, Islam MA, Wang Q et al (2022) Scalable graphene fluoride sandwiched aramid nanofiber paper with superior high-temperature capacitive energy storage. Chem Eng J 444:136504–136514. https://doi.org/10.1016/j.cej.2022.136504

    Article  CAS  Google Scholar 

  7. Wu M, Zhou Y, Zhang H, Liao W (2022) 2D boron nitride nanosheets for smart thermal management and advanced dielectrics. Adv Mater Interfaces 9(25):2200610–2200635. https://doi.org/10.1002/admi.202200610

    Article  CAS  Google Scholar 

  8. Narendra Kumar Y, Venkateswarlu B, Ratna Raju L, Dumpala R, Ratna Sunil B (2021) Developing Zn-MgO composites for degradable implant applications by powder metallurgy route. Mater Lett 302:130433. https://doi.org/10.1016/j.matlet.2021.130433

    Article  CAS  Google Scholar 

  9. Huang H, Chen Z, Chen X, Jin J, Huang S, Wang D, Wang L, Liu D (2022) Substrate modification for high-performance thermoelectric materials and generators based on polymer and carbon nanotube composite. Adv Mater Interfaces 9(23):2201193. https://doi.org/10.1002/admi.202201193

    Article  CAS  Google Scholar 

  10. Pan D, Dong J, Yang G, Su F, Chang B, Liu C, Zhu Y-C, Guo Z (2021) Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater 5:58. https://doi.org/10.1007/s42114-021-00362-6

    Article  CAS  Google Scholar 

  11. Salunke DR, Gopalan V (2021) Thermal and electrical behaviors of boron nitride/epoxy reinforced polymer matrix composite — a review. Polym Compos 42(4):1659–1669. https://doi.org/10.1002/pc.25952

    Article  CAS  Google Scholar 

  12. Han Y, Shi X, Wang S, Ruan K, Lu C, Guo Y, Gu J (2021) Nest-like hetero-structured BNNS@SiCnws fillers and significant improvement on thermal conductivities of epoxy composites. Compos B Eng 210:108666. https://doi.org/10.1016/j.compositesb.2021.108666

    Article  CAS  Google Scholar 

  13. Meng J, Wang D, Cheng L, Gao M, Zhang X (2019) Recent progress in synthesis, properties, and applications of hexagonal boron nitride-based heterostructures. Nanotechnology 30(7):74003–74022. https://doi.org/10.1088/1361-6528/aaf301

    Article  CAS  Google Scholar 

  14. Bayır S, Semerci E, Erdogan Bedri T (2021) Preparation of novel thermal conductive nanocomposites by covalent bonding between hexagonal boron nitride nanosheet and well-defined polymer matrix. Compos Part A Appl Sci Manuf 146:1–8. https://doi.org/10.1016/j.compositesa.2021.106406

    Article  CAS  Google Scholar 

  15. Wu K, Fang J, Ma J, Huang R, Chai S, Chen F, Fu Q (2017) Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber. ACS Appl Mater Interfaces 9(35):30035–30045. https://doi.org/10.1021/acsami.7b08214

    Article  CAS  PubMed  Google Scholar 

  16. Vatanpour V, Naziri Mehrabani SA, Keskin B, Arabi N, Zeytuncu B, Koyuncu I (2021) A comprehensive review on the applications of boron nitride nanomaterials in membrane fabrication and modification. Ind Eng Chem Res 60:13391. https://doi.org/10.1021/acs.iecr.1c02102

    Article  CAS  Google Scholar 

  17. Kim JM, Jung D-W, Kim LS, Kim M, Jeong S, Lee S, Chang S-J, Cho JY et al (2021) Continuously thermal conductive pathway of bidisperse boron nitride fillers in epoxy composite for highly efficient heat dissipation. Mater Today Commun 27:102230. https://doi.org/10.1016/j.mtcomm.2021.102230

    Article  CAS  Google Scholar 

  18. Zhao L, Yan L, Wei C, Wang Z, Jia L, Ran Q, Huang X, Ren J (2020) Aqueous-phase exfoliation and functionalization of boron nitride nanosheets using tannic acid for thermal management applications. Ind Eng Chem Res 59:16273–16282. https://doi.org/10.1021/acs.iecr.0c02766

    Article  CAS  Google Scholar 

  19. Hu Z, Liu Y, Lin J, Wu H, Liu B, Guo W, Lin X, Chen L et al (2022) Pyrene-functionalized alkali lignin to disperse hydroxylated boron nitride nanosheets in cellulose nanofibers for thermal management. ACS Appl Nano Mater 6(1):200–211. https://doi.org/10.1021/acsanm.2c04238

    Article  CAS  Google Scholar 

  20. Qian X, Zhou J, Chen G (2021) Phonon-engineered extreme thermal conductivity materials. Nat Mater 20(9):1188–1202. https://doi.org/10.1038/s41563-021-00918-3

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Singh V, Bougher TL, Weathers A, Cai Y, Bi K, Pettes MT, McMenamin SA, Lv W et al (2014) High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol 9:384–390. https://doi.org/10.1038/nnano.2014.44

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Zeng X, Xiong Y, Fu Q, Sun R, Xu J, Xu D, Wong CP (2017) Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale 9:10585–10589. https://doi.org/10.1039/c7nr03717a

    Article  CAS  PubMed  Google Scholar 

  23. Jia L, Jin Y, Ren J, Zhao L, Yan D, Li Z (2021) Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J Mater Chem C 9:2904. https://doi.org/10.1039/d0tc05493c

    Article  CAS  Google Scholar 

  24. Zeng Z, Xu C, Ren J, Yang Z, Wu G, Wei W (2023) Significantly enhanced thermal conductivity of the aramid nanofiber composite film with GO and Ag nanoflakes for thermal management application. J Appl Phys 133:215301. https://doi.org/10.1063/5.0145436

    Article  ADS  CAS  Google Scholar 

  25. Wu K, Wang J, Liu D, Lei C, Liu D, Lei W, Fu Q (2020) Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv Mater 32:e1906939. https://doi.org/10.1002/adma.201906939

    Article  CAS  PubMed  Google Scholar 

  26. Yang M, Cao KQ, Sui L, Qi Y, Zhu J, Waas A, Arruda EM, Kieffer J et al (2011) Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5:6945–6954. https://doi.org/10.1021/nn2014003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou B, Li Q, Xu P, Feng Y, Ma J, Liu C, Shen C (2021) An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 13:2378–2388. https://doi.org/10.1039/d0nr07840a

    Article  CAS  PubMed  Google Scholar 

  28. Shaybanizadeh S, Chermahini AN (2021) Fabricating boron nitride nanosheets from hexagonal BN in water solution by a combined sonication and thermal-assisted hydrolysis method. Ceram Int 47:11122–11128. https://doi.org/10.1016/j.ceramint.2020.12.236

    Article  CAS  Google Scholar 

  29. Zhang X, Zhang J, Xia L, Li C, Wang J, Xu F, Zhang X, Wu H et al (2017) Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl Mater Interfaces 9:22977–22984. https://doi.org/10.1021/acsami.7b05866

    Article  CAS  PubMed  Google Scholar 

  30. Zheng X, Cong H, Yang T, Ji K, Wang C, Chen M (2022) High-efficiency 2D nanosheet exfoliation by a solid suspension-improving method. Nanotechnology 33(18):185602–185612. https://doi.org/10.1088/1361-6528/ac4b7c

    Article  ADS  Google Scholar 

  31. Zhang W, Rahman MM, Ahmed F, Lopa NS, Ge C, Ryu T, Yoon S, Jin L et al (2020) A two-step approach for improved exfoliation and cutting of boron nitride into boron nitride nanodisks with covalent functionalizations. Nanotechnology 31. https://doi.org/10.1088/1361-6528/ab9a76

  32. Oh H, Kim J (2019) Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity. Compos Sci Technol 172:153–162. https://doi.org/10.1016/j.compscitech.2019.01.021

    Article  CAS  Google Scholar 

  33. Yu H, Wang B, Zhou S, Zhu M, Chen W, Chen H, Li X, Liang S et al (2021) Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery. Nano Today 38:101151. https://doi.org/10.1016/j.nantod.2021.101151

    Article  CAS  Google Scholar 

  34. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X et al (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  CAS  Google Scholar 

  35. Xu L, Zhao X, Xu C, Kotov NA (2017) Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv Mater 30(1):1703343. https://doi.org/10.1002/adma.201703343

    Article  CAS  Google Scholar 

  36. Guo Y, Ruan K, Shi X, Yang X, Gu J (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134. https://doi.org/10.1016/j.compscitech.2020.108134

    Article  CAS  Google Scholar 

  37. Huang J, E S, Li J, Jia F, Ma Q, Hua L, Lu Z, (2021) Ball-milling exfoliation of hexagonal boron nitride in viscous hydroxyethyl cellulose for producing nanosheet films as thermal interface materials. ACS Appl Nano Mater 4(12):13167–13175. https://doi.org/10.1021/acsanm.1c02696

    Article  CAS  Google Scholar 

  38. Kim D, You M, Seol JH, Ha S, Kim YA (2017) Enhanced thermal conductivity of individual polymeric nanofiber incorporated with boron nitride nanotubes. J Phys Chem C 121(12):7025–7029. https://doi.org/10.1021/acs.jpcc.7b00047

    Article  CAS  Google Scholar 

  39. Fan L, Zhang S, Zhao G, Fu Q (2021) Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite. Compos Part A Appl Sci Manuf 143:106282–106292. https://doi.org/10.1016/j.compositesa.2021.106282

    Article  CAS  Google Scholar 

  40. Shen X, Zheng Q, Kim JK (2020) Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog Mater Sci 115:100708. https://doi.org/10.1016/j.pmatsci.2020.100708

    Article  CAS  Google Scholar 

  41. Song N, Zhang F, Cao D, Wang P, Ding P (2022) Bicontinuous laminated structure design of polypropylene/reduced graphene oxide hybrid films for thermal management. Adv Compos Hybrid Mater 5:2873. https://doi.org/10.1007/s42114-022-00470-x

    Article  CAS  Google Scholar 

  42. Wang Z, Wu Z, AlMasoud N, Weng L, Alomar TS, El-Bahy ZM, He M, Yang C et al (2023) Effective three-dimensional thermal conductivity networks in polystyrene/multi-walled carbon nanotubes/aluminum oxide@hexagonal boron nitride composites based on synergistic effects and isolated structures. Adv Compos Hybrid Mater 6:125. https://doi.org/10.1007/s42114-023-00702-8

    Article  CAS  Google Scholar 

  43. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692. https://doi.org/10.1063/1.365209

    Article  ADS  CAS  Google Scholar 

  44. Wang J, Jin X, Li C, Wang W, Wu H, Guo S (2019) Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chem Eng J 370:831–854. https://doi.org/10.1016/j.cej.2019.03.229

    Article  CAS  Google Scholar 

  45. Zhao L, Liao C, Liu Y, Huang X, Ning W, Wang Z, Jia L, Ren J (2021) A combination of aramid nanofiber and silver nanoparticle decorated boron nitride for the preparation of a composite film with superior thermally conductive performance. Compos Interfaces 29(4):447–463. https://doi.org/10.1080/09276440.2021.1950378

    Article  ADS  CAS  Google Scholar 

  46. Huang X, Nakagawa S, Houjou H, Yoshie N (2021) Insights into the role of hydrogen bonds on the mechanical properties of polymer networks. Macromolecules 54:4070. https://doi.org/10.1021/acs.macromol.1c00120

    Article  ADS  CAS  Google Scholar 

  47. Sakhavand N, Shahsavari R (2018) Insights on synergy of materials and structures in biomimetic platelet-matrix composites. Appl Phys Lett 112:051601. https://doi.org/10.1063/1.5017200

    Article  ADS  CAS  Google Scholar 

  48. Zhou W, Cao G, Yuan M, Zhong S, Wang Y, Liu X, Cao D, Peng W et al (2023) Core-shell engineering of conductive fillers toward enhanced dielectric properties: a universal polarization mechanism in polymer conductor composites. Adv Mater 35:e2207829. https://doi.org/10.1002/adma.202207829

    Article  CAS  PubMed  Google Scholar 

  49. Wu Z, Wang X, Annamareddy SHK, Gao S, Xu Q, Algadi H, Sridhar D, Wasnik P et al (2023) Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@multi-walled carbon nanotubes and boron nitride. ES Mater Manuf 22:847. https://doi.org/10.30919/esmm5f847

  50. Xie ZL, Wu K, Liu DY, Zhang Q, Fu Q (2021) One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Compos Sci Technol 208:108756. https://www.sciencedirect.com/science/article/abs/pii/S0266353821001123

  51. Zhao L, Wei C, Ren J, Li Y, Zheng J, Jia L, Wang Z, Jia S (2022) Biomimetic nacreous composite films toward multipurpose application structured by aramid nanofibers and edge-hydroxylated boron nitride nanosheets. Ind Eng Chem Res 61(25):8881–8894. https://doi.org/10.1021/acs.iecr.2c01281

    Article  CAS  Google Scholar 

  52. Lee H, Lee J, Joo SH, Kang SJ, Kwak SK, Yu S, Park C (2020) Dual functionalization of hexagonal boron nitride nanosheets using pyrene-tethered poly(4-vinylpyridine) for stable dispersion and facile device incorporation. ACS Appl Nano Mater 3:7633. https://doi.org/10.1021/acsanm.0c01262

    Article  CAS  Google Scholar 

  53. Feng C-P, Bai L, Bao R-Y, Liu Z-Y, Yang M-B, Chen J, Yang W (2017) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1:160. https://doi.org/10.1007/s42114-017-0013-2

    Article  CAS  Google Scholar 

  54. Wang Y, Yang D, Hessien MM, Du K, Ibrahim MM, Su Y, Mersal GAM, Ma R et al (2022) Flexible barium titanate@polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high performance energy storage. Adv Compos Hybrid Mater 5:2106. https://doi.org/10.1007/s42114-022-00552-w

    Article  CAS  Google Scholar 

Download references

Funding

We appreciate the financial support from the National Natural Science Foundation of China (52107020, 52377028, 52301192, 52377026), the Key R & D project of Sichuan Province (2023YFG0236), the State Key Laboratory of Electrical Insulation and Power Equipment (EIPE23210), and the Postdoctoral Science Foundation of China (2018M643475).

Author information

Authors and Affiliations

Authors

Contributions

Junwen Ren: conceptualization, investigation, formal analysis, methodology, writing—original draft, writing—review and editing. Guoqing Jiang: data curation, investigation, methodology. Zi Wang: investigation, methodology. Qiuwanyu Qing: formal analysis. Fuli Teng and Guanglei Wu: formal analysis. Zirui Jia and Shenli Jia: formal analysis, writing—review and editing.

Corresponding authors

Correspondence to Zirui Jia or Shenli Jia.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4177 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Jiang, G., Wang, Z. et al. Highly thermoconductive and mechanically robust boron nitride/aramid composite dielectric films from non-covalent interfacial engineering. Adv Compos Hybrid Mater 7, 5 (2024). https://doi.org/10.1007/s42114-023-00816-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00816-z

Keywords

Navigation