Skip to main content
Log in

Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dielectric polymers featuring high thermal conductivity, excellent mechanical, and stable dielectric properties over a broad temperature range have attracted extensive scientific attention. In this work, a large-scale, layered film was fabricated using blade-coating approach, which integrated aramid nanofibers (ANFs) and boron nitride nanosheets (BNNSs) through a typical sol-gel transformation procedure. The as-prepared film with 20 wt.% BNNS displays high thermal conductivity (14.03 W·m−1·K−1), 103-fold higher than pure ANF film, attributing to massive continuous thermal conduction pathway between BNNSs so as to facilitate fast phonon transmission. The film boasts excellent mechanical properties (stress 97.14 ± 5.17 MPa, strain 19.36 ± 0.35%), high degradation temperature (∼ 542 °C), a moderate dielectric constant (∼ 6.9 at 104 Hz), together with low dielectric loss (∼ 0.026 at 104 Hz). Meanwhile, the film reveals high breakdown voltage (310 MV·m−1) and volume resistivity (1013 Ω·cm). Notably, these dielectric properties remain largely unchanged over a wide temperature range (25 to 200 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassan, Y. A.; Hu, H. L. Current status of polymer nanocomposite dielectrics for high-temperature applications. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106064.

    Article  Google Scholar 

  2. Nie, R. P.; Lei, J.; Jia, L. C.; Chen, C.; Xu, L.; Li, H.; Huang, H. D.; Yu, F. M.; Li, Z. M. Significantly improved high-temperature performance of polymer dielectric via building nanosheets and confined space. Compos. Part B Eng. 2020, 196, 108108.

    Article  CAS  Google Scholar 

  3. Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

    Article  CAS  Google Scholar 

  4. Lokanathan, M.; Acharya, P. V.; Ouroua, A.; Strank, S. M.; Hebner R. E.; Bahadur, V. Review of nanocomposite dielectric materials with high thermal conductivity. Proc. IEEE 2021, 109, 1364–1397.

    Article  CAS  Google Scholar 

  5. Cao, L.; Wang, J. J.; Dong, J.; Zhao, X.; Li H. B.; Zhang, Q. H. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Compos. Part B Eng. 2020, 188, 107882.

    Article  CAS  Google Scholar 

  6. Shinde, S. L.; Ishii, S.; Dao, T. D.; Sugavaneshwar, R. P.; Takei, T.; Nanda, K. K.; Nagao, T. Enhanced solar light absorption and photoelectrochemical conversion using TiN nanoparticle-incorporated C3N4-C dot sheets. ACS Appl. Mater. Interfaces 2018, 10, 2460–2468.

    Article  CAS  Google Scholar 

  7. Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacremimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

    Article  CAS  Google Scholar 

  8. Teng, C.; Su, L. Y.; Chen, J. X.; Wang, J. F. Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105498.

    Article  CAS  Google Scholar 

  9. Li, L.; Cao, Y. X.; Liu, X. Y.; Wang, J. F.; Yang, Y. Y.; Wang, W. J. Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 2020, 12, 27350–27360.

    Article  CAS  Google Scholar 

  10. Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacremimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

    Article  Google Scholar 

  11. Ryu, S. Y.; Chung, J. W.; Kwak, S. Y. Amphiphobic meta-aramid nanofiber mat with improved chemical stability and mechanical properties. Eur. Polym. J. 2017, 91, 111–120.

    Article  CAS  Google Scholar 

  12. Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

    Article  CAS  Google Scholar 

  13. Azizi, A.; Gadinski, M. R.; Li, Q.; AlSaud, M. A.; Wang, J. J.; Wang, Y.; Wang, B.; Liu, F. H.; Chen, L. Q.; Alem, N. et al. Highperformance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 2017, 29, 1701864.

    Article  Google Scholar 

  14. Chi, Q. G.; Gao, Z. Y.; Zhang, T. D.; Zhang, C. H.; Zhang, Y.; Chen, Q. G.; Wang, X.; Lei, Q. Q. Excellent energy storage properties with high-temperature stability in sandwich-structured polyimide-based composite films. ACS Sustainable Chem. Eng. 2019, 7, 748–757.

    Article  CAS  Google Scholar 

  15. Vu, M. C.; Mani, D.; Jeong, T. H.; Kim, J. B.; Lim, C. S.; Kang, H.; Islam, M. A.; Lee, O. C.; Park, P. J.; Kim, S. R. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem. Eng. J. 2022, 429, 132182.

    Article  CAS  Google Scholar 

  16. Li, M.; Wang, M. J.; Hou, X.; Zhan, Z. L.; Wang, H.; Fu, H.; Lin, C. T.; Fu, L.; Jiang, N.; Yu, J. H. Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos. Part B Eng. 2020, 184, 107746.

    Article  CAS  Google Scholar 

  17. Zhang, L.; Deng, H.; Fu, Q. Recent progress on thermal conductive and electrical insulating polymer composites. Compos. Commun. 2018, 8, 74–82.

    Article  Google Scholar 

  18. Teng, C.; Xie, D.; Wang, J. F.; Yang, Z.; Ren, G. Y.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240.

    Article  Google Scholar 

  19. Tang, L.; He, M. K.; Na, X.; Guan, X. F.; Zhang, R. H.; Zhang, J. L.; Gu, J. W. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun. 2019, 16, 5–10.

    Article  Google Scholar 

  20. Gu, J. W.; Meng, X. D.; Tang, Y. S.; Li, Y.; Zhuang, Q.; Kong, J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos. Part A Appl. Sci. Manuf. 2017, 92, 27–32.

    Article  CAS  Google Scholar 

  21. Liu, J. C.; Li, W. W.; Guo, Y. F.; Zhang, H.; Zhang, Z. Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. Part A Appl. Sci. Manuf. 2019, 120, 140–146.

    Article  CAS  Google Scholar 

  22. Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2020, 14, 2424–2431.

    Article  Google Scholar 

  23. Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2010, 26, 2594–2608.

    Article  Google Scholar 

  24. Li, Y.; Tian, X J.; Yang, W.; Li, Q.; Hou, L. Q.; Zhu, Z. X.; Tang, Y. S.; Wang, M. J.; Zhang, B.; Pan, T. et al. Dielectric composite reinforced by in-situ growth of carbon nanotubes on boron nitride nanosheets with high thermal conductivity and mechanical strength. Chem. Eng. J. 2019, 358, 718–724.

    Article  CAS  Google Scholar 

  25. Wang, T. T.; Wei, C. M.; Yan, L.; Liao, Y.; Wang, G. L.; Zhao, L. H.; Fu, M. L.; Ren, J. W. Thermally conductive, mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications. Compos. Interfaces 2021, 28, 1067–1080.

    Article  CAS  Google Scholar 

  26. Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.

    Article  CAS  Google Scholar 

  27. Wu, K.; Fang, J. C.; Ma, J. R.; Huang, R.; Chai, S. G.; Chen, F.; Fu, Q. Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber. ACS Appl. Mater. Interfaces 2017, 9, 30035–30045.

    Article  CAS  Google Scholar 

  28. Han, Y. X.; Shi, X. T.; Yang, X. T.; Guo, Y. Q.; Zhang, J. L.; Kong, J.; Gu, J. W. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol. 2020, 187, 107944.

    Article  CAS  Google Scholar 

  29. Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

    Article  CAS  Google Scholar 

  30. Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

    Article  CAS  Google Scholar 

  31. Zhang, B.; Wang, W. C.; Tian, M.; Ning, N. Y.; Zhang, L. Q. Preparation of aramid nanofiber and its application in polymer reinforcement: A review. Eur. Polym. J. 2020, 139, 109996.

    Article  CAS  Google Scholar 

  32. Roy, S.; Zhang, X.; Puthirath, A. B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M. M.; Babu, G.; Susarla, S.; Saju, S. K.; Tran, M. K. et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 2021, 33, 2101589.

    Article  CAS  Google Scholar 

  33. Zhao, Y.; Li, X.; Shen, J. N.; Gao, C. J.; Van Der Bruggen, B. The potential of Kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 2020, 8, 7548–7568.

    Article  CAS  Google Scholar 

  34. Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

    Article  CAS  Google Scholar 

  35. Rahman, M. M.; Puthirath, A. B.; Adumbumkulath, A.; Tsafack, T.; Robatjazi, H.; Barnes, M.; Wang, Z. X.; Kommandur, S.; Susarla, S.; Sajadi, S. M. et al. Fiber reinforced layered dielectric nanocomposite. Adv. Funct. Mater. 2019, 29, 1900056.

    Article  Google Scholar 

  36. Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx mxene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

    Article  CAS  Google Scholar 

  37. Zeng, F. Z.; Chen, X. H.; Xiao, G.; Li, H.; Xia, S.; Wang, J. F. A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 2020, 14, 611–619.

    Article  CAS  Google Scholar 

  38. Wang, Y. J.; Xia, S.; Li, H.; Wang, J. F. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 2019, 29, 1903876.

    Article  Google Scholar 

  39. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)−(AgNWs/ANF) Thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  40. Weng, C. X.; Xing, T. L.; Jin, H.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105927.

    Article  CAS  Google Scholar 

  41. Kwon, S. R.; Harris, J.; Zhou, T. Y.; Loufakis, D.; Boyd, J. G.; Lutkenhaus, J. L. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 2017, 11, 6682–6690.

    Article  CAS  Google Scholar 

  42. Lin, M. Y.; Li, Y. H.; Xu, K.; Ou, Y. H.; Su, L. F.; Feng, X.; Li, J.; Qi, H. S.; Liu, D. T. Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets. Compos. Sci. Technol. 2019, 175, 85–91.

    Article  CAS  Google Scholar 

  43. Yang, L.; Qiu, J. H.; Ji, H. L.; Zhu, K. J.; Wang, J. Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites. Compos. Part A Appl. Sci. Manuf. 2014, 65, 125–134.

    Article  CAS  Google Scholar 

  44. Liu, S. N.; Tu, L.; Liu, C. C.; Tong, L. F.; Bai, Z. X.; Lin, G.; Jia, K.; Liu, X. B. Interfacial crosslinking enabled super-engineering polymer-based composites with ultra-stable dielectric properties beyond 350 °C. J. Alloys Compd. 2022, 891, 161952.

    Article  CAS  Google Scholar 

  45. Li, M. J.; Zhu, Y. F.; Teng, C. Q. Facial fabrication of aramid composite insulating paper with high strength and good thermal conductivity. Compos. Commun. 2020, 21, 100370.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 22075161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Teng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Ma, X., Zhou, J. et al. Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites. Nano Res. 15, 8648–8655 (2022). https://doi.org/10.1007/s12274-022-4456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4456-6

Keywords

Navigation