Skip to main content
Log in

Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the continuous innovation of electronic information technology, thermal interface materials, which mainly play the role of heat dissipation in microelectronic devices, will face great challenges. In this work, the boron nitride whiskers (BNWK)@Al2O3/cellulose aerogels (CA) were obtained by electrostatic self-assembly one-dimensional BNWK and zero-dimensional nano-Al2O3 combined with directional freezing of CA. The obtained BNWK@Al2O3/CA not only has a unique vertical network structure but also exhibits exceptional compressive mechanical strength, especially when the mass ratio of BNWK/nano-Al2O3 is 1:7. The compressive strength of BNWK@Al2O3(1:7)/CA reaches 97 kPa. Based on the flexibility of the CA and the support of the rigid hybrid filler BNWK@Al2O3, the theoretical relaxation time of the composite is also as high as 25,327 s. Furthermore, the thermal conductivity of the epoxy-based composite (BNWK@Al2O3/CA/EP) with a filler loading of 8.6 wt% is about 1.92 W/(m·K), which is 9.6 times that of pure EP; the excellent thermally conductive property is due to the accelerated phonon transport by the vertically arranged BNWK@Al2O3 network structure. Hence, this work provides a new idea for developing a new generation of thermal interface materials.

Graphical abstract

The obtained BNWK@Al2O3/CA not only has a unique vertical thermal conduction network structure, but also exhibits exceptional compressive mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary material. Raw data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yang G, Zhang X, Shang Y, Xu P, Pan D, Su F, Ji Y, Feng Y, Liu Y, Liu C (2021) Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos Sci Technol 201:108521. https://doi.org/10.1016/j.compscitech.2020.108521

    Article  Google Scholar 

  2. He L (2021) Improve thermal conductivity of polymer composites via conductive network. ES Mater Manuf 13:1–2. https://doi.org/10.30919/esmm5f460

  3. Yang X, Fan S, Li Y, Guo Y, Li Y, Ruan K, Zhang S, Zhang J, Kong J, Gu J (2020) Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos Part A 128:105670. https://doi.org/10.1016/j.compositesa.2019.105670

    Article  Google Scholar 

  4. Han H, Sun H, Lei F, Huang J, Lyu S, Wu B, Yang M, Zhang C, Li D, Zhang Z, Sun D (2021) Flexible ethylene-vinyl acetate copolymer/fluorographene composite films with excellent thermal conductive and electrical insulation properties for thermal management. ES Mater Manuf 15:53–64. https://doi.org/10.30919/esmm5f523

  5. Xu F, Bao D, Cui Y, Gao Y, Lin D, Wang X, Peng J, Geng H, Wang H (2021) Copper nanoparticle-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv Compos Hybrid Mater 3:2235–2246. https://doi.org/10.1007/s42114-021-00367-1

    Article  Google Scholar 

  6. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf 13:53–65. https://doi.org/10.30919/10.30919/esmm5f450

  7. Zhang T, Sun J, Ren L, Yao Y, Wang M, Zeng X, Sun R, Xu J-B, Wong C-P (2019) Nacre-inspired polymer composites with high thermal conductivity and enhanced mechanical strength. Compos Part A 121:92–99. https://doi.org/10.1016/j.compositesa.2019.03.017

    Article  Google Scholar 

  8. Li C, Zhang H, Zhang X, Zhang Z, Li N, Liu Y, Zheng X, Gao D, Wu D, Sun J (2022) Construction of bi-continuous structure in fPC/ABS-hBN (GB) composites with simultaneous enhanced thermal conductivity and mechanical properties. Compos Sci Technol 223:109437. https://doi.org/10.1016/j.compscitech.2022.109437

    Article  Google Scholar 

  9. Yu Z, Bai Y, Wang JH, Li Y (2021) Effects of functional additives on structure and properties of polycarbonate-based composites filled with hybrid chopped carbon fiber/graphene nanoplatelet fillers. ES Energy Environ 12:66–76. https://doi.org/10.30919/esee8c434

  10. Zhang D, Hu S, Sun Y, Liu X, Wang H, Wang H, Chen Y, Ni Y (2020) XTe (X = Ge, Sn, Pb) monolayers: promising thermoelectric materials with ultralow lattice thermal conductivity and high-power factor. ES Energy Environ 10: 59–65. https://doi.org/10.30919/esee8c934

  11. Dar UA, Salunke-Gawali SS, Shinde D, Bh S, Satpute S (2021) Thermal and spectral studies of transition metal complexes of 2-bromo-3-hydroxynaphthalene-1,4-dione: evaluation of antibacterial activity against six bacterial strains. Eng Sci 15:105–115. https://doi.org/10.30919/es8d492

  12. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  Google Scholar 

  13. Tülbez S, Esen Z, Dericioglu AF (2020) Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites. Adv Compos Hybrid Mater 3:177–186. https://doi.org/10.1007/s42114-020-00155-3

    Article  Google Scholar 

  14. Roy R, Das D, Rout PK (2022) A review of advanced mullite ceramics. Eng Sci 18:20–30. https://doi.org/10.30919/es8d582

  15. Jia X, Li Q, Ao C, Hu R, Xia T, Xue Z, Wang Q, Deng X, Zhang W, Lu C (2020) High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage. Compos Part A 129:105710. https://doi.org/10.1016/j.compositesa.2019.105710

    Article  Google Scholar 

  16. Evans AM, Giri A, Sangwan VK, Xun S, Bartnof M, Torres-Castanedo CG, Balch HB, Rahn MS, Bradshaw NP, Vitaku E (2021) Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat Mater 20:1142–1148. https://doi.org/10.1038/s41563-021-00934-3

    Article  Google Scholar 

  17. Yu J, Zhang Y, Guo Q, Hou H, Ma Y, Zhao Y (2022) Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv Compos Hybrid Mater 5:2297–2305. https://doi.org/10.1007/s42114-021-00403-0

    Article  Google Scholar 

  18. Liu H, Yan Z, Sun Z, Li A, Guo Z, Qian L (2021) Highly efficient synthesis of hexagonal boron nitride nanofibers with high specific surface area. ES Mater Manuf 16: 56–65. https://doi.org/10.30919/esmm5f561

  19. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu BB, Murugadoss V, Huang M, Guo Z (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater 5:1090–1099. https://doi.org/10.1007/s42114-022-00438-x

    Article  Google Scholar 

  20. Pan D, Dong J, Yang G, Su F, Chang B, Liu C, Zhu Y-C, Guo Z (2022) Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater 5:58–70. https://doi.org/10.1007/s42114-021-00362-6

    Article  Google Scholar 

  21. Gao Z, Li L (2021) Boron nitride whisker@graphene nanohybrid-filled epoxy composites with high thermal conductivities and low dielectric losses. Mater Res Express 8:075008. https://doi.org/10.1088/2053-1591/abeab8

    Article  Google Scholar 

  22. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4:36–50. https://doi.org/10.1007/s42114-021-00208-1

    Article  Google Scholar 

  23. Bian W, Yao T, Chen M, Zhang C, Shao T, Yang Y (2018) The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos Sci Technol 168:420–428. https://doi.org/10.1016/j.compscitech.2018.10.002

    Article  Google Scholar 

  24. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340. https://doi.org/10.30919/es8d518

  25. Duan X, Cheng S, Tao R, Zhang Z, Zhao G (2022) Synergistically enhanced thermal control ability and mechanical properties of natural rubber for tires through a graphene/silica with a dot-face structure. Adv Compos Hybrid Mater 5:1145–1157. https://doi.org/10.1007/s42114-022-00453-y

    Article  Google Scholar 

  26. Chen N, Li T, Wang Y, Pan L, Bao W, Chen Z (2020) Generalized “slope method” of the 3ω analysis to measure the thermal conductivity and heat capacity of solids: frequency- vs. current-sweep. ES Energy Environ 10:13–21. https://doi.org/10.30919/esee8c725

  27. Feng C-P, Bai L, Bao R-Y, Liu Z-Y, Yang M-B, Chen J, Yang W (2018) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1:160–167. https://doi.org/10.1007/s42114-017-0013-2

    Article  Google Scholar 

  28. Cao X, Jia Z, Hu D, Wu G (2022) Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption. Adv Compos Hybrid Mater 5:1030–1043. https://doi.org/10.1007/s42114-021-00415-w

    Article  Google Scholar 

  29. Zhang LDH (2020) Recent advances in probiotics encapsulation by electrospinning. ES Food Agrof 2:3–12. https://doi.org/10.30919/esfaf1120

  30. Xiao L, Qi H, Qu K, Shi C, Cheng Y, Sun Z, Yuan B, Huang Z, Pan D, Guo Z (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4(2):306–316. https://doi.org/10.1007/s42114-021-00223-2

    Article  Google Scholar 

  31. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Bin XuB, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  Google Scholar 

  32. Pan D, Li Q, Zhang W, Dong J, Su F, Murugadoss V, Liu Y, Liu C, Naik N, Guo Z (2021) Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos Part B 209:108609. https://doi.org/10.1016/j.compositesb.2021.108609

    Article  Google Scholar 

  33. Pan D, Luo S, Feng Y, Zhang X, Su F, Liu H, Liu C, Mai X, Naik N, Guo Z (2021) Highly thermally conductive 3D BN/MWCNTs/C spatial network composites with improved electrically insulating and flame retardancy prepared by biological template assisted method. Compos Part B 222:109039. https://doi.org/10.1016/j.compositesb.2021.109039

    Article  Google Scholar 

  34. Wu X, Su C, Shi K, Wu F, Fu C (2022) Coupling between hyperbolic phonon polaritons excited in two ultrathin hexagonal boron nitride sheets. Eng Sci 19:273–278. https://doi.org/10.30919/es8e669

  35. Liang C, Zhao P, Email E, Hou P, Wang S, Strokova V, Lu L, Cheng X (2020) Investigation of compatibility of fluorine-acrylic emulsion and sulphoaluminate cement in the design of composite coating: effects of sorbitol and its mechanism. ES Mater Manuf 8:36–45. https://doi.org/10.30919/esmm5f707

  36. Gu H, Huo X, Chen J, El-Bahy SME, El-Bahy ZME (2022) An overview of cellulose aerogel: classification and applications. ES Food Agrof 10:1–9. https://doi.org/10.30919/esfaf782

  37. Atta OM, Manan S, Ul-Islam MU, Ahmed AAQ, Ullah MW, Yang G (2021) Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. ES Food Agrof 6:12–26. https://doi.org/10.30919/esfaf590

  38. Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Murugadoss V, Huang M, Guo Z (2022) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng Sci 18:59–74. https://doi.org/10.30919/es8d588

  39. Li Y, Guo J, Li M, Tang Y, Murugadoss V, Seok I, Yu J, Sun L, Sun C, Luo Y (2021) Recent application of cellulose gel in flexible sensing-a review. ES Food Agrof 4:9–27. https://doi.org/10.30919/esfaf466

  40. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  Google Scholar 

  41. Cheng Y, Zhang G (2022) Impact of atomic coating on thermal conductivity of nano materials. ES Energy Environ 17:1–10. https://doi.org/10.30919/esee8c741

  42. Osman A, Elhakeem A, Kaytbay S, Ahmed A (2022) A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv Compos Hybrid Mater 5:547–605. https://doi.org/10.1007/s42114-022-00423-4

    Article  Google Scholar 

  43. Kowshik S, Sharma S, U SR, Shettar M, Hiremath P, Upadhyaya A (2022) Investigation on the effects of uncarbonised, carbonised and hybrid eggshell filler addition on the mechanical properties of glass fibre/polyester composites. Eng Sci 18:121–131. https://doi.org/10.30919/es8d679

  44. Huang J, Zou W, Luo Y, Wu Q-b, Lu X, Qu J (2021) Phase morphology, rheological behavior, and mechanical properties of poly (lactic acid)/poly (butylene succinate)/hexamethylene diisocyanate reactive blends. ES Energy Environ 12:86–94. https://doi.org/10.30919/es8d679

  45. Zhang S, Cheng B, Jia Z, Zhao Z, Jin X, Zhao Z, Wu G (2022) The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv Compos Hybrid Mater 5:1658–1698. https://doi.org/10.1007/s42114-022-00514-2

    Article  Google Scholar 

  46. Wang X, Qi F, Wang Z, Zhang Z, Li Q, Wu J, Shi G (2022) Dependence of Al doping on the in-situ reactive preparation and mechanical properties of Ti3SiC2/Al2O3 composites. ES Mater Manuf 15:85–95. https://doi.org/10.30919/esmm5f467

  47. Chen F, Xiao H, Peng ZQ, Zhang ZP, Rong MZ, Zhang MQ (2021) Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv Compos Hybrid Mater 4:1048–1058. https://doi.org/10.1007/s42114-021-00303-3

    Article  Google Scholar 

  48. Wu Z, Wang X, Annamareddy SHK, Gao S, Xu Q, Algadi H, Sridhar D, Wasnik P, Xu BB, Weng L, Guo Z Dielectric properties and thermal conductivity of polyvinylidene fluoride synergistically enhanced with silica@multi-walled carbon nanotubes and boron nitride. ES Mater Manuf 847. https://doi.org/10.30919/esmm5f847

  49. Yang D, Kong X, Ni Y, Gao D, Yang B, Zhu Y, Zhang L (2019) Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant. Compos Part A 124:105447. https://doi.org/10.1016/j.compositesa.2019.05.015

    Article  Google Scholar 

  50. Chen H, Li C, Yao Q, Chen F, Fu Q (2022) Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene via incorporating hexagonal boron nitride and alumina particles. J Appl Polym Sci 139:51497. https://doi.org/10.1002/app.51497

    Article  Google Scholar 

  51. Wang S, Lu X, Negi A, He J, Kim K, Shao H, Jiang P, Liu J, Hao Q (2021) Revisiting the reduction of thermal conductivity in nano- to micro-grained bismuth telluride: the importance of grain-boundary thermal resistance. Eng Sci 17:45–55. https://doi.org/10.30919/es8d513

  52. Liu W, Huang D, Yue Y (2023) Interfacial thermal transport in energy and environmental applications. ES Energy Environ 21:596. https://doi.org/10.30919/esee8c596

  53. Min J, Hu J, Sun C, Wan H, Liao P, Teng H, Lin J (2022) Fabrication processes of metal-fiber reinforced polymer hybrid components: a review. Adv Compos Hybrid Mater 5:651–678. https://doi.org/10.1007/s42114-021-00393-z

    Article  Google Scholar 

  54. Han G, Zhao X, Feng Y, Ma J, Zhou K, Shi Y, Liu C, Xie X (2020) Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. Chem Eng J 407:127099. https://doi.org/10.1016/j.cej.2020.127099

    Article  Google Scholar 

  55. Ruan Y, Li N, Liu C, Chen L, Zhang S, Wang Z (2020) Increasing heat transfer performance of thermoplastic polyurethane by constructing thermal conduction channels of ultra-thin boron nitride nanosheets and carbon nanotubes. New J Chem 44:18823–18830. https://doi.org/10.1039/D0NJ04215C

    Article  Google Scholar 

  56. Li M, Wang M, Hou X, Zhan Z, Wang H, Fu H, Lin C-T, Fu L, Jiang N, Yu J (2020) Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos Part B 184:107746. https://doi.org/10.1016/j.compositesb.2020.107746

    Article  Google Scholar 

  57. Zhong B, Zou J, An L, Ji C, Huang X, Liu W, Yu Y, Wang H, Wen G, Zhao K, Lin X (2019) The effects of the hexagonal boron nitride nanoflake properties on the thermal conductivity of hexagonal boron nitride nanoflake/silicone rubber composites. Compos Part A 127:105629. https://doi.org/10.1016/j.compositesa.2019.105629

  58. Yi W, Wu W, Drummer D, Shen W, Chao L, Ning W (2019) Synergistic construction of thermally conductive network in polybenzoxazine with boron nitride hybrid fillers. Mater Res Express 6:125369. https://doi.org/10.1088/2053-1591/ab6e7d

    Article  Google Scholar 

  59. Li X, Feng Y, Chen C, Ye Y, Zeng H, Qu H, Liu J, Zhou X, Long S, Xie X (2018) Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J Mater Chem A 6:20500–20512. https://doi.org/10.1039/C8TA08008A

    Article  Google Scholar 

  60. Jia W, Qi Y, Hu Z, Xiong Z, Luo Z, Xiang Z, Hu J, Lu W (2021) Facile fabrication of monodisperse CoFe2O4 nanocrystals@ dopamine@ DOX hybrids for magnetic-responsive on-demand cancer theranostic applications. Adv Compos Hybrid Mater 4:989–1001. https://doi.org/10.1007/s42114-021-00276-3

    Article  Google Scholar 

  61. Han Z, Song Y, Wang J, Li S, Pan D, Liu C, Guo Z (2023) Research progress of thermal insulation materials used in spacesuits. ES Energy Environ 21:947. https://doi.org/10.30919/esee947

  62. Yan X, Zhang S, Tang W, Xia M (2020) Thermal conductivity of PBX compound calculated by phonons of explosive and binder molecular crystals. ES Energy Environ 11:74–83. https://doi.org/10.30919/esee8c1036

  63. Choo H, Bourke MA, Daymond MR (2001) A finite-element analysis of the inelastic relaxation of thermal residual stress in continuous-fiber-reinforced composites. Compos Sci Technol 61:1757–1772. https://doi.org/10.1016/S0266-3538(01)00075-6

    Article  Google Scholar 

  64. Goli E, Parikh N, Yourdkhani M, Hibbard N, Moore J, Sottos N, Geubelle P (2020) Frontal polymerization of unidirectional carbon-fiber-reinforced composites. Compos Part A 130:105689. https://doi.org/10.1016/j.compositesa.2019.105689

    Article  Google Scholar 

  65. Zhang X, Dong J, Pan D, Yang G, Su F, Ji Y, Liu C, Shen C (2021) Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties. Adv Compos Hybrid Mater 4:1102–1112. https://doi.org/10.1007/s42114-021-00335-9

    Article  Google Scholar 

Download references

Acknowledgements

The researchers would like to acknowledge the Deanship of Scientific Research, Taif University for funding this work.

Funding

This work was financially supported by the National Natural Science Foundation of China (12072325).

Author information

Authors and Affiliations

Authors

Contributions

Zhaoyang Li prepared the materials and conducted most of the measurements and data analysis. Duo Pan conceived the idea, wrote the paper, and coordinated the overall project. Ziyuan Han, D. Jaya Prasanna Kumar, Juanna Ren, Hua Hou, Zeinhom M. El-Bahy, and Gaber A. M. Mersal contributed to the data analysis. Ben Bin Xu and Yongzhi Liu revised the paper. Chuntai Liu provided supervision and resources. Mohamed M. Ibrahim reviewed and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Duo Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1290 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Pan, D., Han, Z. et al. Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites. Adv Compos Hybrid Mater 6, 224 (2023). https://doi.org/10.1007/s42114-023-00804-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00804-3

Keywords

Navigation