Skip to main content
Log in

Construction of boron nitride nanosheets-based nanohybrids by electrostatic self-assembly for highly thermally conductive composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets (BNNS) composites are crucially significant to tackle the “overheating” concern of microelectronics. However, the superiority of BNNS has not been fully exploited due to the large thermal resistance in polymer-fillers and fillers-fillers interfaces. Rational construction of BNNS-based nanohybrids is considered as a feasible and promising strategy, but often suffers from complicated preparation process and high cost. Herein, we reported a facile electrostatic self-assembly approach to successfully construct the BNNS-based nanohybrids, and fabricated a series of highly thermally conductive cellulose nanofibers (CNFs)-based composites. It was found that the positively charged thermally conductive nanoparticles (e.g., nanodiamond and modified Al2O3) can be stably adsorbed on the surface of BNNS, serving as a “bridge” to effectively strengthen the thermal conduction pathway in both CNF/BNNS and BNNS/BNNS interfaces. Moreover, benefiting from their highly oriented “brick–mortar” layered structure and strong interfacial interaction between CNFs matrix and BNNS-based nanohybrids, the resultant flexible CNFs-based composites exhibit superior thermal conductivity. This work offers a general approach for constructing BNNS-based nanohybrids, which shows great promise in developing advanced thermally conductive composites for practical applications in thermal management field.

Graphical abstract

BNNS-based nanohybrids were constructed by electrostatic self-assembly for fabricating highly thermally conductive composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pan D, Dong J, Yang G, Su F, Chang B, Liu C et al (2021) Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00362-6

    Article  Google Scholar 

  2. Dai W, Lv L, Lu J, Hou H, Yan Q, Alam FE et al (2019) A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2):1547–1554

    CAS  Google Scholar 

  3. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J et al (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1(2):207–230

    Article  Google Scholar 

  4. Guo Y, Qiu H, Ruan K, Zhang Y, Gu J (2021) Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett 14(1):26

    Article  Google Scholar 

  5. Huang X, Zhi C, Jiang P, Colberg D, Bando Y, Tanaka T (2013) Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23(14):1824–1831

    Article  CAS  Google Scholar 

  6. Li M, Wang M, Hou X, Zhan Z, Wang H, Fu H et al (2020) Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos Part B Eng 184:107746

  7. Lei C, Zhang Y, Liu D, Xu X, Wu K, Fu Q (2021) Highly thermo-conductive yet electrically insulating material with perpendicularly engineered assembly of boron nitride nanosheets. Compos Sci Technol 214:108995

  8. Ma T-B, Ma H, Ruan K-P, Shi X-T, Qiu H, Gao S-Y, Gu J-W (2022) Thermally conductive polylactic acid composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J Polym Sci 40:248–255

    Article  CAS  Google Scholar 

  9. Kim G-H, Lee D, Shanker A, Shao L, Kwon MS, Gidley D et al (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14(3):295–300

    Article  CAS  Google Scholar 

  10. Xu F, Bao D, Cui Y, Gao Y, Lin D, Wang X et al (2021) Copper nanoparticle-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00367-1

    Article  Google Scholar 

  11. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28

    Article  CAS  Google Scholar 

  12. Guo Y, Ruan K, Shi X, Yang X, Gu J (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134

  13. Fang H, Bai S-L, Wong CP (2016) “White graphene”—hexagonal boron nitride based polymeric composites and their application in thermal management. Compos Commun 2:19–24

    Article  Google Scholar 

  14. Morishita T, Okamoto H (2016) Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites. ACS Appl Mater Interfaces 8(40):27064–27073

    Article  CAS  Google Scholar 

  15. Zhang L, Deng H, Fu Q (2018) Recent progress on thermal conductive and electrical insulating polymer composites. Compos Commun 8:74–82

    Article  Google Scholar 

  16. Chen J, Huang X, Sun B, Jiang P (2019) Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1):337–345

    Article  CAS  Google Scholar 

  17. Hu D, Liu H, Ma W (2020) Rational design of nanohybrids for highly thermally conductive polymer composites. Compos Commun 21:100427

  18. Zhou Y, Liu F, Chen C-Y (2019) Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation. Adv Compos Hybrid Mater 2(1):46–50

    Article  CAS  Google Scholar 

  19. Pullanchiyodan A, S. Nair K, Surendran KP (2017) Silver-decorated boron nitride nanosheets as an effective hybrid filler in PMMA for high-thermal-conductivity electronic substrates. ACS Omega 2(12):8825–8835

    Article  CAS  Google Scholar 

  20. Ma M, Xu L, Qiao L, Chen S, Shi Y, He H et al (2020) Nanofibrillated cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation. Chem Eng J 392:123714

  21. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y et al (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4(1):36–50

    Article  CAS  Google Scholar 

  22. Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong C-P (2016) Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Sci Rep 6(1):19394

    Article  Google Scholar 

  23. Chen C, Xue Y, Li Z, Wen Y, Li X, Wu F et al (2019) Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles. Chem Eng J 369:1150–1160

    Article  CAS  Google Scholar 

  24. Han Y, Shi X, Yang X, Guo Y, Zhang J, Kong J et al (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187

  25. Zhang Y, Choi JR, Park S-J (2017) Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos Part A Appl Sci Manuf 101:227–236

    Article  CAS  Google Scholar 

  26. Wang K, Zhu X, Hu Y, Qiu S, Gu L, Wang C et al (2020) Stable anchoring and uniform distribution of SiO2 nanotubes on reduced graphene oxide through electrostatic self-assembly for ultra-high lithium storage performance. Carbon 167:835–842

    Article  CAS  Google Scholar 

  27. Liu H, Zhang X, Zhu Y, Cao B, Zhu Q, Zhang P et al (2019) Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett 11(1):65

    Article  CAS  Google Scholar 

  28. Xie H, Li P, Shao J, Huang H, Chen Y, Jiang Z et al (2019) Electrostatic self-assembly of Ti3C2Tx MXene and gold nanorods as an efficient surface-enhanced raman scattering platform for reliable and high-sensitivity determination of organic pollutants. ACS Sensors 4(9):2303–2310

    Article  CAS  Google Scholar 

  29. Qian R, Yu J, Wu C, Zhai X, Jiang P (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3(38):17373–17379

    Article  CAS  Google Scholar 

  30. Wang X, Wu P (2017) Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. ACS Appl Mater Interfaces 9(23):19934–19944

    Article  CAS  Google Scholar 

  31. Zhang D-L, Liu S-N, Cai H-W, Feng Q-K, Zhong S-L, Zha J-W et al (2020) Enhanced thermal conductivity and dielectric properties in electrostatic self-assembly 3D pBN@nCNTs fillers loaded in epoxy resin composites. J Materiomics 6(4):751–759

    Article  Google Scholar 

  32. Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches: an overview. Waste Manag (Oxford) 33(5):1237–1250

    Article  Google Scholar 

  33. Hu D, Ma W (2020) Nanocellulose as a sustainable building block to construct eco-friendly thermally conductive composites. Ind Eng Chem Res 59(44):19465–19484

    Article  CAS  Google Scholar 

  34. De France K, Zeng Z, Wu T, Nyström G (2021) Functional materials from nanocellulose: utilizing structure–property relationships in bottom-up fabrication. Adv Mater 33(28):2000657

    Article  Google Scholar 

  35. Thomas B, Raj MC, B AK, H RM, Joy J, Moores A et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118(24):11575–11625

    Article  CAS  Google Scholar 

  36. Hu D, Ma W, Zhang Z, Ding Y, Wu L (2020) Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films. ACS Appl Mater Interfaces 12(9):11115–11125

    Article  CAS  Google Scholar 

  37. Barnard AS, Sternberg M (2007) Crystallinity and surface electrostatics of diamond nanocrystals. J Mater Chem 17(45):4811–4819

    Article  CAS  Google Scholar 

  38. Ginés L, Mandal S, Ashek IA, Cheng C-L, Sow M, Williams OA (2017) Positive zeta potential of nanodiamonds Nanoscale 9(34):12549–12555

    Google Scholar 

  39. Guerra V, Wan C, Degirmenci V, Sloan J, Presvytis D, McNally T (2018) 2D boron nitride nanosheets (BNNS) prepared by high-pressure homogenisation: structure and morphology. Nanoscale 10(41):19469–19477

    Article  CAS  Google Scholar 

  40. Sun W, Meng Y, Fu Q, Wang F, Wang G, Gao W et al (2016) High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics. ACS Appl Mater Interfaces 8(15):9881–9888

    Article  CAS  Google Scholar 

  41. Kato T, Matsumoto T, Hongo C, Nishino T (2018) Mechanical and thermal properties of cellulose nanofiber composites with nanodiamond as nanocarbon filler. Nanocomposites 4(4):127–136

    Article  CAS  Google Scholar 

  42. Song N, Cui S, Hou X, Ding P, Shi L (2017) Significant enhancement of thermal conductivity in nanofibrillated cellulose films with low mass fraction of nanodiamond. ACS Appl Mater Interfaces 9(46):40766–40773

    Article  CAS  Google Scholar 

  43. Wan P, Zhao N, Qi F, Zhang B, Ouyang X (2020) Synthesis of PDA-BN@f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties. Prog Org Coat 146:105713

  44. Luo J, Zhang M, Yang B, Liu G, Tan J, Nie J et al (2019) A promising transparent and UV-shielding composite film prepared by aramid nanofibers and nanofibrillated cellulose. Carbohydr Polym 203:110–118

    Article  CAS  Google Scholar 

  45. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  46. Ruan K, Shi X, Guo Y, Gu J (2020) Interfacial thermal resistance in thermally conductive polymer composites: a review. Compos Commun 22:100518

  47. Song N, Jiao D, Ding P, Cui S, Tang S, Shi L (2016) Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J Mater Chem C 4(2):305–314

    Article  CAS  Google Scholar 

  48. Li Q, Xue Z, Zhao J, Ao C, Jia X, Xia T et al (2020) Mass production of high thermal conductive boron nitride/nanofibrillated cellulose composite membranes. Chem Eng J 383:123101

  49. Hu D, Zhang Z, Liu M, Lin J, Chen X, Ma W (2020) Multifunctional UV-shielding nanocellulose films modified with halloysite nanotubes-zinc oxide nanohybrid. Cellulose 27(1):401–413

    Article  CAS  Google Scholar 

  50. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Project of Dongguan City Social Science and Technology Development Plan (No. 2020507163161) and Guangdong Basic and Applied Basic Research Foundation (2021A1515110405; 2019A1515111049).

Author information

Authors and Affiliations

Authors

Contributions

DH: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft. HL: investigation, data curation. MY: investigation, formal analysis. YG: validation, data curation. WM: supervision, resources, project administration, writing—reviewing and editing, funding acquisition.

Corresponding author

Correspondence to Wenshi Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2907 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Liu, H., Yang, M. et al. Construction of boron nitride nanosheets-based nanohybrids by electrostatic self-assembly for highly thermally conductive composites. Adv Compos Hybrid Mater 5, 3201–3211 (2022). https://doi.org/10.1007/s42114-022-00463-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00463-w

Keywords

Navigation