Skip to main content
Log in

Proton-conductive channels engineering of perfluorosulfonic acid membrane via in situ acid–base pair of metal organic framework for fuel cells

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The development of rapid and dependable proton transport channels is crucial for proton exchange membrane fuel cells (PEMFCs) operating in low humidity conditions. Herein, a metal–organic framework (NH-Zr framework) consisting of 1H-pyrazole-3, 5-dicarboxylic acid (PZDC), and zirconium chloride octahydrate (ZrOCl2·8H2O) rich in basic sites was in situ constructed in a perfluorosulfonic acid (PFSA) solution, and hybrid proton exchange membranes were prepared (PFSA-NH-Zr). The introduced NH-Zr framework successfully induced proton conducting groups (-SO3H) reorganization along the NH-Zr framework, resulting in the formation of fast ion transport channels. Meanwhile, under low humidity, the acid–base pairs between N–H (NH-Zr framework) and -SO3H (PFSA) promoted the protonation/deprotonation and the subsequent proton leap via the Grotthuss mechanism. Especially, the hybrid membrane PFSA-NH-Zr-1 with suitable NH-Zr content had a promising proton conductivity of 0.031 S/cm at 80 °C, 40% relative humidity (RH), and 0.292 S/cm at 80 °C, 100% RH, which were approximately 33% and 40% higher than the pristine PFSA membrane (0.023 S/cm and 0.209 S/cm), respectively. In addition, the maximum power density of the hybrid proton exchange membrane was 0.726 W/cm2, which was nearly 20% higher than the pristine PFSA membrane (0.604 W/cm2) under 80 °C, 40% RH. Thus, PFSA-NH-Zr may be promising membrane materials for potential applications in fuel cells. This work established a referable strategy for developing high-performance proton exchange membranes under low RH conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Bai H, Zhang J, Wang H, Xiang Y, Lu S (2022) Highly conductive quaternary ammonium-containing cross-linked poly (vinyl pyrrolidone) for high-temperature PEM fuel cells with high-performance. J Membr Sci 645:120194

    Article  CAS  Google Scholar 

  2. Chen L, Nie Y, Yu H, Tao W (2020) Study on the mechanism of destruction triggering of membrane electrode assembly of hydrogen fuel cell. Int J Heat Mass Transfer 159:120144

    Article  CAS  Google Scholar 

  3. Jin F, Yan K, Zhao Y, Du L, Li R, Zheng J, Wang T, Feng Z (2020) Surface enriched sulfonic acid ionic clusters of nafion nanofibers as long-range interconnected ionic nanochannels for anisotropic proton transportation: phenomenon and molecular mechanism. Adv Mater Interfaces 7:2000342

    Article  CAS  Google Scholar 

  4. Zhao S, Wang R, Tian T, Liu H, Zhang H, Tang H (2022) Self-assembly-cooperating in situ construction of MXene-CeO2 as hybrid membrane coating for durable and high-performance proton exchange membrane fuel cell. ACS Sustainable Chem Eng 10:4269–4278

    Article  CAS  Google Scholar 

  5. Wang B, Sun X, Xie X, Wang J, Li L, Jiao K (2021) Experimental investigation of a novel cathode matrix flow field in proton exchange membrane fuel cell. ES Energy Environ 12:95–107

    CAS  Google Scholar 

  6. Liu H, Guo L, Liu M, Chen H, Han W, Bian H, Tian X, Wang C, Guo Z, Sun J (2022) Water management simulation of proton exchange membrane fuel cells with micro-ribs based on volume of fluid model. ES Energy Environ 15:45–55

    Google Scholar 

  7. Tian T, Cheng Y, Sun Z, Huang K, Lei M, Tang H (2023) Carbon nanotubes supported oxygen reduction reaction catalysts: role of inner tubes. Adv Compos Hybrid Mater 6:7

    Article  CAS  Google Scholar 

  8. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  9. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashmeah R, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mate 5:3146–3157

    Article  CAS  Google Scholar 

  10. Qiu W, Hao Q, Annamareddy S, Xu B, Guo Z, Jiang Q (2022) Electric vehicle revolution and implications: ion battery and energy. Eng Sci 20:100–109

    CAS  Google Scholar 

  11. Lian M, Sun J, Jiang D, Xu M, Wu Z, Xu B, Algadi H, Huang M, Guo Z (2022) Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. Nanotechnol 34:2

    Google Scholar 

  12. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal G, Ibrahim M, EI-Bahy Z, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160

    Article  Google Scholar 

  13. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah R, Abo-Dief H, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222

    Article  Google Scholar 

  14. Han J, Kim K, Kim S, Lee H, Kim J, Ko T, Bae J, Choi W, Sung Y, Lee J (2020) Cross-linked sulfonated poly(ether ether ketone) membranes formed by poly(2,5-benzimidazole)-grafted graphene oxide as a novel cross-linker for direct methanol fuel cell applications. J Power Sources 448:227427

    Article  CAS  Google Scholar 

  15. Huang X, Zhao S, Liu H, Wang R, Tang H (2022) Hydrophilic channel volume behavior on proton transport performance of proton exchange membrane in fuel cells. ACS Appl Polym Mater 4:2423–2431

    Article  CAS  Google Scholar 

  16. Kim A, Vinothkannan M, Song M, Lee J, Lee H, Yoo D (2020) Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly (ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos B 188:107890

    Article  CAS  Google Scholar 

  17. Wang L, Deng N, Wang G, Ju J, Cheng B, Kang W (2019) Constructing amino-functionalized flower-like metal organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction. ACS Appl Mater Interfaces 11:39979–39990

    Article  CAS  Google Scholar 

  18. Zhao G, Xu X, Shi L, Cheng B, Zhuang X, Yin Y (2020) Biofunctionalized nanofiber hybrid proton exchange membrane based on acid-base ion-nanochannels with superior proton conductivity. J Power Sources 452:227839

    Article  CAS  Google Scholar 

  19. Li G, Shen R, Hu S, Wang B, Algadi H, Wang C (2022) Norbornene-based acid-base blended polymer membranes with low ion exchange capacity for proton exchange membrane fuel cell. Adv Compos Hybrid Mater 5:2131–2137

    Article  CAS  Google Scholar 

  20. Yang J, Tong L, Alsubaie A, Mahmoud K, Guo Y, Liu L, Guo L, Sun Z, Wang C (2022) Hybrid proton exchange membrane used in fuel cell with amino-functionalized metal-organic framework in sulfonated polyimide to construct efficient ion transport channel. Adv Compos Hybrid Mater 5:834–842

    Article  CAS  Google Scholar 

  21. Hamid N, Kamarudin S, Karim N (2021) Potential of Nafion/eggshell composite membrane for application in direct methanol fuel cell. Int J Energy Res 45:2245–2264

    Article  CAS  Google Scholar 

  22. Passalacqua E, Pedicini R, Carbone A, Gatto I, Matera F, Patti A, Sacca A (2020) Effects of the chemical treatment on the physical-chemical and electrochemical properties of the commercial nafion (TM) NR212 Membrane. Mater 13:5254

    Article  CAS  Google Scholar 

  23. Yin C, He C, Liu Q, Xiong B, Li J, Zhou Y (2021) Effect of the orientation of sulfonated graphene oxide (SG) on the gas-barrier properties and proton conductivity of a SG/Nafion composite membrane. J Membr Sci 625:119146

    Article  CAS  Google Scholar 

  24. Zizhou R, Cay A, Kumbasar E, Colpan C (2021) Production of poly(vinyl alcohol)/Nafion (R) nanofibers and their stability assessment for the use in direct methanol fuel cells. J Ind Text 50:773–793

    Article  CAS  Google Scholar 

  25. Guo Y, Jiang Z, Ying W, Chen L, Liu Y, Wang X, Jiang Z, Chen B, Peng X (2018) A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv Mater 30:1705155

    Article  Google Scholar 

  26. Giffin G, Haugen G, Hamrock S, Di Noto V (2013) Interplay between structure and relaxations in perfluorosulfonic acid proton conducting membranes. J Am Chem Soc 135:822–834

    Article  CAS  Google Scholar 

  27. Hou J, Li J, Mountz D, Hull M, Madsen L (2013) Correlating morphology, proton conductivity, and water transport in polyelectrolyte-fluoropolymer blend membranes. J Membr Sci 448:292–299

    Article  CAS  Google Scholar 

  28. Kreuer K, Portale G (2013) A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications. Adv Funct Mater 23:5390–5397

    Article  CAS  Google Scholar 

  29. Li N, Guiver M (2014) Ion transport by nanochannels in ion-containing aromatic copolymers. Macromol 47:2175–2198

    Article  CAS  Google Scholar 

  30. Park C, Lee S, Hwang D, Shin D, Cho D, Lee K, Kim T, Kim T, Lee M, Kim D, Doherty C, Thornton A, Hill A, Guiver M, Lee Y (2016) Nanocrack-regulated self-humidifying membranes. Nat 532:480–483

  31. Tohidian M, Ghaffarian S (2017) Polyelectrolyte nanocomposite membranes with imidazole-functionalized multi-walled carbon nanotubes for use in fuel cell applications. J Macromol Sci Part B: Phys 56:725–738

    Article  CAS  Google Scholar 

  32. Huang Z, Lv B, Zhou L, Wei T, Qin X, Shao Z (2022) Ultra-thin h-BN doped high sulfonation sulfonated poly (ether-ether-ketone) of PTFE-reinforced proton exchange membrane. J Membr Sci 644:120099

    Article  CAS  Google Scholar 

  33. Park S, Lee D, Kang Y (2010) High temperature proton exchange membranes based on triazoles attached onto SBA-15 type mesoporous silica. J Membr Sci 357:1–5

    Article  CAS  Google Scholar 

  34. He X, He G, Zhao A, Wang F, Mao X, Yin Y, Cao L, Zhang B, Wu H, Jiang Z (2017) Facilitating proton transport in nafion-based membranes at low humidity by incorporating multifunctional graphene oxide nanosheets. ACS Appl Mater Interfaces 9:27676–27687

    Article  CAS  Google Scholar 

  35. Ye G, Hayden C, Goward G (2007) Proton dynamics of nafion and Nafion/SiO2 composites by solid state NMR and pulse field gradient NMR. Macromol 40:1529–1537

    Article  CAS  Google Scholar 

  36. Kuang T, Zhang M, Chen F, Fei Y, Yang J, Zhong M, Wu B, Liu T (2023) Creating poly(lactic acid)/carbon nanotubes/carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller. Adv Compos Hybrid Mater 6:48

    Article  CAS  Google Scholar 

  37. Zhang Z, Liu M, Ibrahim M, Wu H, Wu Y, Li Y, Mersal G, El-Azab I, El-Bahy S, Huang M, Jiang Y, Liang G, Xie P, Liu C (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066

    Article  CAS  Google Scholar 

  38. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa T, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z (2022) Recent Advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695

    Article  Google Scholar 

  39. Liu M, Wu H, Wu Y, Xie P, Pashameah R, Abo-Dief H, El-Bahy S, Wei Y, Li G, Li W, Liang G, Liu C, Sun K, Fan R (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5:2021–2030

    Article  CAS  Google Scholar 

  40. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil R, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    Article  CAS  Google Scholar 

  41. Lu J, Tang H, Lu S, Wu H, Jiang S (2011) A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells. J Mater Chem 21:6668–6676

    Article  CAS  Google Scholar 

  42. Tang H, Wan Z, Pan M, Jiang S (2007) Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells. Electrochem Commun 9:2003–2008

    Article  CAS  Google Scholar 

  43. Patel H, Mansor N, Gadipelli S, Brett D, Guo Z (2016) Superacidity in Nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells. ACS Appl Mater Interfaces 8:30687–30691

    Article  CAS  Google Scholar 

  44. Li J, Xu G, Cai W, Xiong J, Ma L, Yang Z, Huang Y, Cheng H (2018) Non-destructive modification on Nafion membrane via in-situ inserting of sheared graphene oxide for direct methanol fuel cell applications. Electrochim Acta 282:362–368

    Article  CAS  Google Scholar 

  45. Li J, Xu G, Luo X, Xiong J, Liu Z, Cai W (2018) Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application. Appl Energy 213:408–414

    Article  CAS  Google Scholar 

  46. Li Z, Huang H, Zhu J, Wu J, Yang H, Wei L, Guo X (2019) Ionic conduction in composite polymer electrolytes: case of PEO: Ga-LLZO composites. ACS Appl Mater Interfaces 11:784–791

    Article  CAS  Google Scholar 

  47. Zhou Q, Ma J, Dong S, Li X, Cui G (2019) Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 31:1902029

    Article  CAS  Google Scholar 

  48. Liu W, Luo N, Li P, Yang X, Dai Z, Song S, Wei J, Zhang H (2020) New sulfonated poly (ether ether ketone) composite membrane with the spherical bell-typed superabsorbent microspheres: excellent proton conductivity and water retention properties at low humidity. J Power Sources 452:227823

    Article  CAS  Google Scholar 

  49. Rao Z, Lan M, Wang Z, Wan H, Li G, Zhu J, Tang B, Liu H (2022) Effectively facilitating the proton conduction of proton exchange membrane by polydopamine modified hollow metal-organic framework. J Membr Sci 644:120098

    Article  CAS  Google Scholar 

  50. Khatua S, Bar A, Sheikh J, Clearfield A, Konar S (2018) Achieving amphibious superprotonic conductivity in a Cu-I metal-organic framework by strategic pyrazinium salt impregnation. Chem - Eur J 24:872–880

    Article  CAS  Google Scholar 

  51. Phang W, Jo H, Lee W, Song J, Yoo K, Kim B, Hong C (2015) Superprotonic conductivity of a UiO-66 Framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew Chem Int Ed 54:5142–5146

    Article  CAS  Google Scholar 

  52. Yang F, Huang H, Wang X, Li F, Gong Y, Zhong C, Li J (2015) Proton conductivities in functionalized UiO-66: tuned properties, thermogravimetry mass, and molecular simulation analyses. Cryst Growth Des 15:5827–5833

    Article  CAS  Google Scholar 

  53. Yoshida Y, Kitagawa H (2019) Ionic conduction in metal-organic frameworks with incorporated ionic liquids. ACS Sustainable Chem Eng 7:70–81

    Article  CAS  Google Scholar 

  54. Zhang F, Dong L, Qin J, Guan W, Liu J, Li S, Lu M, Lan Y, Su Z, Zhou H (2017) Effect of Imidazole arrangements on proton-conductivity in metal-organic frameworks. J Am Chem Soc 139:6183–6189

    Article  CAS  Google Scholar 

  55. Xue R, Guo H, Yang W, Huang S, Yang G (2022) Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids. Adv Compos Hybrid Mater 5:1595–1611

    Article  CAS  Google Scholar 

  56. Feng S, Zhai F, Su H, Sridhar D, Algadi H, Xu B, Pashameah R, Alzahrani E, Abo-Dief H, Ma Y, Li T, Guo Z (2023) Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater Today Phys 30:100950

    Article  Google Scholar 

  57. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–222

    Article  CAS  Google Scholar 

  58. Yang X, Fan W, Wang H, Shi Y, Wang S, Liew R, Ge S (2022) Recycling of bast textile wastes into high value-added products: a review. Environ Chem Lett 20:3747–3763

    Article  CAS  Google Scholar 

  59. Ge S, Zuo S, Zhang M, Luo Y, Yang R, Wu Y, Zhang Y, Li J, Xia C (2021) Utilization of decayed wood for polyvinyl chloride/wood flour composites. J Mater Res Technol 12:862–869

    Article  CAS  Google Scholar 

  60. Ge S, Ma N, Jiang S, Ok Y, Lam S, Li C, Shi S, Nie X, Qiu Y, Li D, Wu Q, Tsang D, Peng W, Sonne C (2020) Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater Interfaces 12:30824–30832

    Article  CAS  Google Scholar 

  61. Li Z, He G, Zhang B, Cao Y, Wu H, Jiang Z, Zhou T (2014) Enhanced proton conductivity of Nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading. ACS Appl Mater Interfaces 6:9799–9807

    Article  CAS  Google Scholar 

  62. Duan Y, Ru C, Li J, Sun Y, Pu X, Liu B, Pang B, Zhao C (2022) Enhancing proton conductivity and methanol resistance of SPAEK membrane by incorporating MOF with flexible alkyl sulfonic acid for DMFC. J Membr Sci 641:119906

    Article  CAS  Google Scholar 

  63. Wang J, Liu Y, Dang J, Zhou G, Wang Y, Zhang Y, Qu L, Wu W (2020) Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J Membr Sci 602:117978

    Article  Google Scholar 

  64. Peckham T, Holdcroft S (2010) Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv Mater 22:4667–4690

    Article  CAS  Google Scholar 

  65. Xu J, Zhang Z, Yang K, He W, Yang X, Du X, Meng L, Zhao P, Wang Z (2020) Construction of new transport channels by blending POM-based inorganic-organic complex into sulfonated poly(ether ketone sulfone) for proton exchange membrane fuel cells. J Membr Sci 596:117711

    Article  CAS  Google Scholar 

  66. Ru C, Li Z, Zhao C, Duan Y, Zhuang Z, Bu F, Na H (2018) Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells. ACS Appl Mater Interfaces 10:7963–7973

    Article  CAS  Google Scholar 

  67. Ru C, Gu Y, Duan Y, Zhao C, Na H (2019) Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sulfonated poly(arylene ether ketones) for direct methanol fuel cells. J Membr Sci 573:439–447

    Article  CAS  Google Scholar 

  68. Wang H, Zhao Y, Shao Z, Xu W, Wu Q, Ding X, Hou H (2021) Proton conduction of Nafion hybrid membranes promoted by NH3-Modified Zn-MOF with host-guest collaborative hydrogen bonds for H2/O2 fuel cell applications. ACS Appl Mater Interfaces 13:7485–7497

    Article  CAS  Google Scholar 

  69. Lee K, Chu J, Kim A, Yoo D (2019) Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application. Int J Energy Res 43:5333–5345

    Article  CAS  Google Scholar 

  70. Ghadimi A, Norouzbahari S, Sadrzadeh M, Mohammadi T (2012) Improvement in gas separation properties of a polymeric membrane through the incorporation of inorganic nano-particles. Polym Adv Technol 23:1101–1111

    Article  CAS  Google Scholar 

  71. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu B, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195

    Article  Google Scholar 

  72. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu B, Algadi H, Pashameah R, Alanazi A, Alzahrani E, Li H, Du W, Guo Z, Hou C (2022) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol

  73. Cai Y, Yang Q, Zhu Z, Sun Q, Zhu A, Zhang Q, Liu Q (2019) Achieving efficient proton conduction in a MOF-based proton exchange membrane through an encapsulation strategy. J Membr Sci 590:117277

    Article  CAS  Google Scholar 

  74. Cai Y, Zhang Q, Zhu A, Liu Q (2021) Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. J Colloid Interface Sci 594:593–603

    Article  CAS  Google Scholar 

  75. Ketpang K, Oh K, Lim S, Shanmugam S (2016) Nafion-porous cerium oxide nanotubes composite membrane for polymer electrolyte fuel cells operated under dry conditions. J Power Sources 329:441–449

    Article  CAS  Google Scholar 

  76. Rao Z, Feng K, Tang B, Wu P (2017) Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J Membr Sci 533:160–170

    Article  CAS  Google Scholar 

  77. Wang B, Hong L, Li Y, Zhao L, Zhao C, Na H (2017) Property enhancement effects of side-chain-type naphthalene based sulfonated poly(arylene ether ketone) on Nafion composite membranes for direct methanol fuel cells. ACS Appl Mater Interfaces 9:32227–32236

    Article  CAS  Google Scholar 

  78. Yang F, Xu G, Dou Y, Wang B, Zhang H, Wu H, Zhou W, Li J, Chen B (2017) A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy 2

  79. Zhao G, Shi L, Zhang M, Cheng B, Yang G, Zhuang X (2021) Self-assembly of metal-organic framework onto nanofibrous mats to enhance proton conductivity for proton exchange membrane. Int J Hydrogen Energy 46:36415–36423

    Article  CAS  Google Scholar 

  80. Zhao G, Xu X, Zhao H, Shi L, Zhuang X, Cheng B, Yin Y (2020) Zeolitic imidazolate framework decorated on 3D nanofiber network towards superior proton conduction for proton exchange membrane. J Membr Sci 601:117914

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (T2241003).

Author information

Authors and Affiliations

Authors

Contributions

Wenxing Zhang designed the study and collected the data. Shengqiu Zhao analysed most of the data and wrote the initial draft of the paper. Rui Wang, Aojie Zhang, and Yi Huang contributed to refining the ideas and carrying out additional analyses. Haolin Tang contributed the central idea and finalized this paper. Wenxing Zhang and Shengqiu Zhao contributed equally to this work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Haolin Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2858 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhao, S., Wang, R. et al. Proton-conductive channels engineering of perfluorosulfonic acid membrane via in situ acid–base pair of metal organic framework for fuel cells. Adv Compos Hybrid Mater 6, 60 (2023). https://doi.org/10.1007/s42114-023-00637-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00637-0

Keywords

Navigation