Skip to main content

Advertisement

Log in

Composite phase change materials embedded into cellulose/polyacrylamide/graphene nanosheets/silver nanowire hybrid aerogels simultaneously with effective thermal management and anisotropic electromagnetic interference shielding

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Exploiting an advanced material simultaneously with effective thermal management (TM) and electromagnetic interference (EMI) shielding capacity is ungently demanded yet challenging for the miniaturized and integrated electronics. Anisotropic networks can be impregnated with phase change materials (PCMs) to fabricate multifunctional shape-stable PCMs (ss-CPCMs) simultaneously with excellent TM and EMI shielding, which is rarely reported. Herein, the anisotropic cellulose/polyacrylamide/graphene nanosheet/silver nanowire (CPGxAy) hybrid aerogels were successfully prepared using directional freeze-drying method, and then utilized as supporting skeletons to embed polyethylene glycol (PEG) via vacuum-assistant impregnation. Profited by the synergistic effect of graphene nanosheets (GNPs) and silver nanowires (AgNWs), the resultant polyethylene glycol@cellulose/polyacrylamide/graphene nanosheet/silver nanowire hybrid aerogel (PEG@CPGxAy) ss-CPCMs exhibit fascinating thermal conductivity (TC) of 0.84 W/m·K (200% increase in comparison with that of pure PEG) and anisotropic average EMI shielding effectiveness (SE) of 71.08 dB along the transverse direction and 35.21 dB along the longitudinal direction, while remaining high melting and crystallization enthalpy efficiency of 93.47% and 93.08%, respectively. In addition, PEG@CPGxAy ss-CPCMs also display great shape stability, thermal stability, and cyclic reusability in the storing/releasing latent heat processes. This investigation sheds new light on designing and fabricating ss-CPCMs with pretty comprehensive properties for TM and EMI shielding of modern electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhang Z, Cao B (2022) Thermal smart materials with tunable thermal conductivity: Mechanisms, materials, and applications. Sci China Phys Mech 65(11):117003

    Article  CAS  Google Scholar 

  2. Li X, Sheng M, Gong S, Wu H, Chen X, Lu X et al (2022) Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem Eng J 430:132928

    Article  CAS  Google Scholar 

  3. He YJ, Shao YW, Xiao YY, Yang JH, Qi XD, Wang Y (2022) Multifunctional phase change composites based on elastic MXene/silver nanowire sponges for excellent thermal/solar/electric energy storage, shape memory, and adjustable electromagnetic interference shielding functions. ACS Appl Mater Inter 14(4):6057–6070

    Article  CAS  Google Scholar 

  4. Su M, Han G, Gao J, Feng Y, He C, Ma J et al (2022) Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. Chem Eng J 427:131665

    Article  CAS  Google Scholar 

  5. Min P, Liu J, Li X, An F, Liu P, Shen Y et al (2018) Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv Funct Mater 28(51):1805365

    Article  Google Scholar 

  6. Sun Y, Zhang N, Pan X, Zhong W, Qiu B, Cai Y et al (2021) Thermal properties of biomass-based form-stable phase change material for latent heat thermal energy storage. Int J Energ Res 45(14):20372–20383

    Article  CAS  Google Scholar 

  7. Zhang Y, Wu K, Fu Q (2021) A structured phase change material with controllable thermoconductive highways enables unparalleled electricity via solar-thermal-electric conversion. Adv Funct Mater 32(6):2109255

    Article  Google Scholar 

  8. Gong S, Sheng X, Li X, Sheng M, Wu H, Lu X et al (2022) A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv Funct Mater 32(26):2200570

    Article  CAS  Google Scholar 

  9. Liu C, Yu W, Chen C, Xie H, Cao B (2020) Remarkably reduced thermal contact resistance of graphene/olefin block copolymer/paraffin form stable phase change thermal interface material. Int J Heat Mass Transf 163:120393

    Article  CAS  Google Scholar 

  10. Abdalkarim SYH, Ouyang Z, Yu HY, Li Y, Wang C, Asad RAM et al (2021) Magnetic cellulose nanocrystals hybrids reinforced phase change fiber composites with highly thermal energy storage efficiencies. Carbohydr Polym 254:117481

    Article  CAS  Google Scholar 

  11. Zhou Y, Liu X, Sheng D, Lin C, Ji F, Dong L et al (2018) Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chem Eng J 338:117–125

    Article  CAS  Google Scholar 

  12. Yang J, Tang L-S, Bao R-Y, Bai L, Liu Z-Y, Yang W et al (2017) Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem Eng J 315:481–490

    Article  CAS  Google Scholar 

  13. Xue F, Lu Y, Qi X-d, Yang J-h, Wang Y (2019) Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem Eng J 365:20–29

    Article  CAS  Google Scholar 

  14. Cheng H, Xing L, Zuo Y, Pan Y, Huang M, Alhadhrami A et al (2022) Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):755–765

    Article  CAS  Google Scholar 

  15. Cheng P, Gao H, Chen X, Chen Y, Han M, Xing L et al (2020) Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem Eng J 397:125330

    Article  CAS  Google Scholar 

  16. Zhang L, Liu X, Deb A, Feng G (2019) Ice-templating synthesis of hierarchical and anisotropic silver-nanowire-fabric aerogel and its application for enhancing thermal energy storage composites. ACS Sust Chem Eng 7(24):19910–19917

    Article  CAS  Google Scholar 

  17. Wu H, Deng S, Shao Y, Yang J, Qi X, Wang Y (2019) Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization. ACS Appl Mater Inter 11(50):46851–46863

    Article  CAS  Google Scholar 

  18. Lyu J, Liu Z, Wu X, Li G, Fang D, Zhang X (2019) Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13(2):2236–2245

    Google Scholar 

  19. Lv L, Wang Y, Ai H, Chen T, Zhang X, Song S (2022) 3D graphene/silver nanowire aerogel encapsulated phase change material with significantly enhanced thermal conductivity and excellent solar-thermal energy conversion capacity. J Mater Chem A 10(14):7773–7784

    Article  CAS  Google Scholar 

  20. Wei X, Xue F, Qi X-d, Yang J-h, Zhou Z-w, Yuan Y-p et al (2019) Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Appl Energ 236:70–80

    Article  CAS  Google Scholar 

  21. Zhang Y, Gu J (2022) A perspective for developing polymer-based electromagnetic interference shielding composites. Nanomicro Lett 14(1):89

    Google Scholar 

  22. Du Y, Xu J, Fang J, Zhang Y, Liu X, Zuo P et al (2022) Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J Mater Chem A 10(12):6690–6700

    Article  CAS  Google Scholar 

  23. Chen Y, Zhang L, Mei C, Li Y, Duan G, Agarwal S et al (2020) Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl Mater Inter 12(31):35513–35522

    Article  CAS  Google Scholar 

  24. Cheng H, Pan Y, Chen Q, Che R, Zheng G, Liu C et al (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4(3):505–513

    Article  CAS  Google Scholar 

  25. Liang C, Ruan K, Zhang Y, Gu J (2020) Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl Mater Inter 12(15):18023–18031

    Article  CAS  Google Scholar 

  26. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nanomicro Lett 14(1):118

    CAS  Google Scholar 

  27. Shi HG, Zhao HB, Liu BW, Wang YZ (2021) Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl Mater Inter 13(22):26505–26514

    Article  CAS  Google Scholar 

  28. Hu W, Huang J, Zhang X, Zhao S, Pei L, Zhang C et al (2020) A mechanically robust and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation. Appl Surf Sci 507:145168

    Article  CAS  Google Scholar 

  29. Li X, Zhao S, Hu W, Zhang X, Pei L, Wang Z (2019) Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2. Appl Surf Sci 481:374–378

    Article  CAS  Google Scholar 

  30. Liu D, Lei C, Wu K, Fu Q (2020) A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion. ACS Nano 14(11):15738–15747

    Article  CAS  Google Scholar 

  31. Zhang C, Shi Z, Li A, Zhang YF (2020) RGO-coated polyurethane foam/segmented polyurethane composites as solid-solid phase change thermal interface material. Polymers (Basel) 12(12):3004

    Article  Google Scholar 

  32. Sun K, Dong H, Kou Y, Yang H, Liu H, Li Y et al (2021) Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem Eng J 419:129637

    Article  CAS  Google Scholar 

  33. Yang G, Wang B, Cheng H, Mao Z, Xu H, Zhong Y et al (2020) Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity. Int J Biol Macromol 148:627–634

    Article  CAS  Google Scholar 

  34. Du X, Qiu J, Deng S, Du Z, Cheng X, Wang H (2021) Flame-retardant and solid-solid phase change composites based on dopamine-decorated BP nanosheets/polyurethane for efficient solar-to-thermal energy storage. Renew Energ 164:1–10

    Article  CAS  Google Scholar 

  35. Du X, Qiu J, Deng S, Du Z, Cheng X, Wang H (2020) Ti3C2Tx@PDA-integrated polyurethane phase change composites with superior solar-thermal conversion efficiency and improved thermal conductivity. ACS Sust Chem Eng 8(14):5799–5806

    Article  CAS  Google Scholar 

  36. Xia Y, Zhang H, Huang P, Huang C, Xu F, Zou Y et al (2019) Graphene-oxide-induced lamellar structures used to fabricate novel composite solid-solid phase change materials for thermal energy storage. Chem Eng J 362:909–920

    Article  CAS  Google Scholar 

  37. Zhang Q, Chen B, Wu K, Nan B, Lu M, Lu M (2021) PEG-filled kapok fiber/sodium alginate aerogel loaded phase change composite material with high thermal conductivity and excellent shape stability. Compos Part A-Appl S 143:106279

    Article  CAS  Google Scholar 

  38. Luo Y, Xie Y, Jiang H, Chen Y, Zhang L, Sheng X et al (2021) Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem Eng J 420:130466

    Article  CAS  Google Scholar 

  39. Xiao Y-y, He Y-j, Wang R-q, Lei Y-z, Yang J-h, Qi X-d et al (2022) Mussel-inspired strategy to construct 3D silver nanoparticle networks in flexible phase change composites with excellent thermal energy management and electromagnetic interference shielding capabilities. Compos Part B-Eng 239:109962

    Article  CAS  Google Scholar 

  40. Zhou M, Wang J, Zhao Y, Wang G, Gu W, Ji G (2021) Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 183:515–524

    Article  CAS  Google Scholar 

  41. Lu X, Zheng Y, Yang J, Qu J (2020) Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Compos Part B-Eng 199:108308

    Article  CAS  Google Scholar 

  42. Jin X-z, Yang Z-y, Huang C-h, Yang J-h, Wang Y (2022) PEDOT:PSS/MXene/PEG composites with remarkable thermal management performance and excellent HF-band & X-band electromagnetic interference shielding efficiency for electronic packaging. Chem Eng J 448:137599

    Article  CAS  Google Scholar 

  43. Cai J-H, Tang X-H, Chen X-D, Wang M (2021) Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos Part A-Appl S 140:106188

    Article  CAS  Google Scholar 

  44. Yao F, Xie W, Ma C, Wang D, El-Bahy ZM, Helal MH et al (2022) Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos Part B-Eng 245:110236

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51963003 and 52263003); Guizhou Provincial Science and Technology Projects (No. ZK[2022]Maj019 and [2020]1Z044).

Author information

Authors and Affiliations

Authors

Contributions

Changmei Wu completed experimental design and characterization, prepared Figs. 1, 2, 3, 4, 5, 6, and 7, Figs. S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, and S15, and Tables S1, S2, S3, S4, and S5, conducted data analysis, and wrote the main original manuscript text; LingJun Zeng prepared Fig. S15a and b; Guojun Chang prepared Fig. 7d1 and e1; Ying Zhou prepared Fig. 3; Kang Yan prepared Fig. 7a–d; Lan Xie guided experimental design, checked the manuscript, corrected the data analysis, and finished the funding acquisition; Bai Xue revised the grammar and expression of the manuscript, updated the formal analysis, and finished the funding acquisition; Qiang Zheng supervised the authenticity of this work. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lan Xie or Bai Xue.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42114_2022_618_MOESM1_ESM.docx

The formulas for calculating EMI SE; Schematic rout for synthesizing AgNWs; SEM image of GNPs; Digital photo of AgNW dispersion; Pore size distribution of CPGxAy hybrid aerogels; XRD and FTIR spectra of PEG, CPGxAy hybrid aerogels and PEG@CPGxAy ss-CPCMs; Typical compressive stress-strain curves of CNFs and CNF/PAM hybrid aerogels. SEM images of PEG@CPGxAy ss-CPCMs; Digital photographs of PEG and PEG@CPGxAy ss-CPCMs on the heating stage at different temperatures without/with a load; DSC and phase change parameters of PEG and PEG@CPGxAy ss-CPCMs; TG thermograms of PEG@CPG6A6 before and after 50/100 thermal cycles; TC of PEG@CPGx ss-CPCMs; Electrical conductivity of PEG@CPGxAy ss-CPCMs; The EMI SER and SEA of PEG@CPGxAy ss-CPCMs; Mechanism illustration of EMI shielding for PEG@CPGxAy ss-CPCMs; Theoretical concentration of each component in CPGxAy mixed liquid; PEG loading fraction in PEG@CPGxAy ss-CPCMs; TG properties of PEG and PEG@CPGxAy ss-CPCMs. Comparison of TC enhancement and melting enthalpy efficiency; Comparison of average EMI SET. (DOCX 8487 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Zeng, L., Chang, G. et al. Composite phase change materials embedded into cellulose/polyacrylamide/graphene nanosheets/silver nanowire hybrid aerogels simultaneously with effective thermal management and anisotropic electromagnetic interference shielding. Adv Compos Hybrid Mater 6, 31 (2023). https://doi.org/10.1007/s42114-022-00618-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00618-9

Keywords

Navigation