Skip to main content
Log in

Thermal smart materials with tunable thermal conductivity: Mechanisms, materials, and applications

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The demand for active and effective management of heat transfer is increasing in various modern application scenarios. The thermal conductivity of materials plays a key role in thermal management systems, and reversibly tunable thermal properties are one of the fundamental needs for materials. Thermal smart materials, whose thermal properties can be tuned with an external trigger, have attracted the attention of researchers. In this paper, we provide a brief review of current research advances in thermal smart materials in recent years in terms of fundamental physical mechanisms, thermal switching ratios, and their application value. We focus on typical thermal smart materials such as nanoparticle suspensions, phase change materials, polymers, layered materials tuned by electrochemistry and other materials tuned by a specific external field. After surveying the fundamental mechanisms, we present applications of thermal smart components and devices in temperature control, thermal circuits, phonon computers, thermal metamaterials, and so on. Finally, we discuss the limitations and challenges of thermal smart materials, as well as our predictions for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Moore, and L. Shi, Mater. Today 17, 163 (2014).

    Article  Google Scholar 

  2. D. Hengeveld, M. Mathison, J. Braun, E. Groll, and A. Williams, HVAC&R Res. 16, 189 (2010).

    Article  Google Scholar 

  3. G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, and C. Dames, Appl. Phys. Rev. 4, 041304 (2017).

    Article  ADS  Google Scholar 

  4. H. Zhang, F. X. Che, T. Y. Lin, and W. Zhao, Modeling, Analysis, Design, and Tests for Electronics Packaging Beyond Moore (Woodhead Publishing, London, 2019), pp. 1–12.

    Google Scholar 

  5. K. Klinar, T. Swoboda, M. Muñoz Rojo, and A. Kitanovski, Adv. Electron. Mater. 7, 2000623 (2021).

    Article  Google Scholar 

  6. Q. An, B. Zhang, X. Zhou, C. Li, J. Wang, and L. Wang, Heat Mass Transfer 56, 1077 (2020).

    Article  ADS  Google Scholar 

  7. Z. Q. Hou, and J. G. Hu, Thermal Control Technology of Spacecraft (Science and Technology of China Press, Beijing, 2007), pp. 1–11.

    Google Scholar 

  8. M. T. F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F. N. Sayed, K. Kato, J. Joyner, and P. M. Ajayan, Nat. Energy 2, 17108 (2017).

    Article  ADS  Google Scholar 

  9. R. Prasher, Proc. IEEE 94, 1571 (2006).

    Article  Google Scholar 

  10. B. Esser, J. Barcena, M. Kuhn, A. Okan, L. Haynes, S. Gianella, A. Ortona, V. Liedtke, D. Francesconi, and H. Tanno, J. Spacecraft Rockets 53, 1051 (2016).

    Article  ADS  Google Scholar 

  11. J. Wang, Y. Li, X. Liu, C. Shen, H. Zhang, and K. Xiong, Chin. J. Aeronaut. 34, 1 (2021).

    Article  ADS  Google Scholar 

  12. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1121 (2006).

    Article  ADS  Google Scholar 

  13. T. Swoboda, K. Klinar, A. S. Yalamarthy, A. Kitanovski, and M. M. Rojo, Adv. Electron. Mater. 7, 2000625 (2021).

    Article  Google Scholar 

  14. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).

    Article  ADS  Google Scholar 

  15. A. K. Geim, Science 324, 1530 (2009), arXiv: 0906.3799.

    Article  ADS  Google Scholar 

  16. C. Kleinstreuer, and Y. Feng, Nanoscale Res. Lett. 6, 439 (2011).

    Article  ADS  Google Scholar 

  17. S. Pil Jang, and S. U. S. Choi, J. Heat Transfer 129, 617 (2007).

    Article  Google Scholar 

  18. Y. Xu, X. Wang, and Q. Hao, Compos. Commun. 24, 100617 (2021).

    Article  Google Scholar 

  19. A. I. Oliva-Avilés, F. Avilés, V. Sosa, A. I. Oliva, and F. Gamboa, Nanotechnology 23, 465710 (2012).

    Article  Google Scholar 

  20. G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, and K. G. Kornev, Nano Lett. 5, 879 (2005).

    Article  ADS  Google Scholar 

  21. E. K. Hobbie, H. Wang, H. Kim, S. Lin-Gibson, and E. A. Grulke, Phys. Fluids 15, 1196 (2003).

    Article  ADS  Google Scholar 

  22. D. J. Dijkstra, M. Cirstea, and N. Nakamura, Rheol. Acta 49, 769 (2010).

    Article  Google Scholar 

  23. N. Song, D. Jiao, P. Ding, S. Cui, S. Tang, and L. Shi, J. Mater. Chem. C 4, 305 (2016).

    Article  Google Scholar 

  24. A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, and K. E. Goodson, ACS Nano 5, 4818 (2011).

    Article  Google Scholar 

  25. B. Y. Cao, and R. Y. Dong, J. Chem. Phys. 140, 034703 (2014).

    Article  ADS  Google Scholar 

  26. R. Y. Dong, and B. Y. Cao, Sci. Rep. 4, 6120 (2014).

    Article  ADS  Google Scholar 

  27. R. Y. Dong, P. Cao, G. X. Cao, G. J. Hu, and B. Y. Cao, Acta Phys. Sin. 66, 014702 (2017).

    Article  Google Scholar 

  28. M. Monti, M. Natali, L. Torre, and J. M. Kenny, Carbon 50, 2453 (2012).

    Article  Google Scholar 

  29. C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).

    Article  ADS  Google Scholar 

  30. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, Appl. Phys. Lett. 89, 143119 (2006).

    Article  ADS  Google Scholar 

  31. Z. T. Zhang, R. Y. Dong, D. S. Qiao, and B. Y. Cao, Nanotechnology 31, 465403 (2020).

    Article  Google Scholar 

  32. J. Philip, P. D. Shima, and B. Raj, Appl. Phys. Lett. 91, 203108 (2007).

    Article  ADS  Google Scholar 

  33. J. Philip, P. D. Shima, and B. Raj, Appl. Phys. Lett. 92, 043108 (2008).

    Article  ADS  Google Scholar 

  34. P. D. Shima, J. Philip, and B. Raj, Appl. Phys. Lett. 95, 133112 (2009).

    Article  ADS  Google Scholar 

  35. C. L. Altan, A. Elkatmis, M. Yüksel, N. Aslan, and S. Bucak, J. Appl. Phys. 110, 093917 (2011).

    Article  ADS  Google Scholar 

  36. P. C. Sun, Y. Huang, R. T. Zheng, G. A. Cheng, Q. M. Wan, and Y. L. Ding, Mater. Lett. 149, 92 (2015).

    Article  Google Scholar 

  37. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  ADS  Google Scholar 

  38. G. Zhu, J. Liu, Q. Zheng, R. Zhang, D. Li, D. Banerjee, and D. G. Cahill, Nat. Commun. 7, 13211 (2016).

    Article  ADS  Google Scholar 

  39. X. Qian, X. Gu, M. S. Dresselhaus, and R. Yang, J. Phys. Chem. Lett. 7, 4744 (2016).

    Article  Google Scholar 

  40. N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H. B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C. W. Nan, J. Wu, Y. Tokura, and P. Yu, Nature 546, 124 (2017).

    Article  ADS  Google Scholar 

  41. J. Cho, M. D. Losego, H. G. Zhang, H. Kim, J. Zuo, I. Petrov, D. G. Cahill, and P. V. Braun, Nat. Commun. 5, 4035 (2014).

    Article  ADS  Google Scholar 

  42. J. N. Reimers, and J. R. Dahn, J. Electrochem. Soc. 139, 2091 (1992).

    Article  ADS  Google Scholar 

  43. J. S. Kang, M. Ke, and Y. Hu, Nano Lett. 17, 1431 (2017).

    Article  ADS  Google Scholar 

  44. J. Sun, H. W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, and Y. Cui, Nat. Nanotech. 10, 980 (2015).

    Article  ADS  Google Scholar 

  45. A. Sood, F. Xiong, S. Chen, H. Wang, D. Selli, J. Zhang, C. J. McClellan, J. Sun, D. Donadio, Y. Cui, E. Pop, and K. E. Goodson, Nat. Commun. 9, 4510 (2018), arXiv: 1901.04639.

    Article  ADS  Google Scholar 

  46. T. Tadano, Y. Gohda, and S. Tsuneyuki, Phys. Rev. Lett. 114, 095501 (2015), arXiv: 1412.5723.

    Article  ADS  Google Scholar 

  47. Q. Lu, S. Huberman, H. Zhang, Q. Song, J. Wang, G. Vardar, A. Hunt, I. Waluyo, G. Chen, and B. Yildiz, Nat. Mater. 19, 655 (2020).

    Article  ADS  Google Scholar 

  48. E. S. Toberer, L. L. Baranowski, and C. Dames, Annu. Rev. Mater. Res. 42, 179 (2012).

    Article  ADS  Google Scholar 

  49. S. R. Bishop, D. Marrocchelli, C. Chatzichristodoulou, N. H. Perry, M. B. Mogensen, H. L. Tuller, and E. D. Wachsman, Annu. Rev. Mater. Res. 44, 205 (2014).

    Article  ADS  Google Scholar 

  50. H. Nazir, M. Batool, F. J. Bolivar Osorio, M. Isaza-Ruiz, X. Xu, K. Vignarooban, P. Phelan, P. Inamuddin, and A. M. Kannan, Int. J. Heat Mass Transfer 129, 491 (2019).

    Article  Google Scholar 

  51. A. Sharma, A. Shukla, C. R. Chen, and T. N. Wu, Sust. Energy Tech. Assess. 7, 17 (2014).

    Google Scholar 

  52. A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, ACS Nano 12, 5774 (2018).

    Article  Google Scholar 

  53. C. N. Berglund, and H. J. Guggenheim, Phys. Rev. 185, 1022 (1969).

    Article  ADS  Google Scholar 

  54. V. N. Andreev, F. A. Chudnovskii, A. V. Petrov, and E. I. Terukov, Phys. Stat. Sol. A 48, K153 (1978).

    Article  ADS  Google Scholar 

  55. R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, Adv. Funct. Mater. 21, 1602 (2011).

    Article  Google Scholar 

  56. K. Dahal, Q. Zhang, Y. Wang, I. K. Mishra, and Z. Ren, RSC Adv. 7, 33775 (2017).

    Article  ADS  Google Scholar 

  57. H. Kizuka, T. Yagi, J. Jia, Y. Yamashita, S. Nakamura, N. Taketoshi, and Y. Shigesato, Jpn. J. Appl. Phys. 54, 053201 (2015).

    Article  ADS  Google Scholar 

  58. D. W. Oh, C. Ko, S. Ramanathan, and D. G. Cahill, Appl. Phys. Lett. 96, 151906 (2010).

    Article  ADS  Google Scholar 

  59. S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J. J. Urban, X. Zhang, C. Dames, S. A. Hartnoll, O. Delaire, and J. Wu, Science 355, 371 (2017).

    Article  ADS  Google Scholar 

  60. A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, J. Phys.-Condens. Matter 11, 2017 (1999).

    Article  ADS  Google Scholar 

  61. V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovaylo, and V. G. Shavrov, Phys. Usp. 49, 871 (2006).

    Article  ADS  Google Scholar 

  62. A. B. Batdalov, A. M. Aliev, L. N. Khanov, V. D. Buchel’nikov, V. V. Sokolovskii, V. V. Koledov, V. G. Shavrov, A. V. Mashirov, and E. T. Dil’mieva, J. Exp. Theor. Phys. 122, 874 (2016).

    Article  ADS  Google Scholar 

  63. Q. Zheng, S. E. Murray, Z. Diao, A. Bhutani, D. P. Shoemaker, and D. G. Cahill, Phys. Rev. Mater. 2, 075401 (2018).

    Article  Google Scholar 

  64. Q. Zheng, G. Zhu, Z. Diao, D. Banerjee, and D. G. Cahill, Adv. Eng. Mater. 21, 1801342 (2019).

    Article  Google Scholar 

  65. M. Wuttig, and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  ADS  Google Scholar 

  66. L. Yang, and B. Y. Cao, J. Phys. D-Appl. Phys. 54, 505302 (2021).

    Article  Google Scholar 

  67. E. Bozorg-Grayeli, J. P. Reifenberg, M. Asheghi, H. S. P. Wong, and K. E. Goodson, Annu. Rev Heat Transfer 16, 397 (2013).

    Article  Google Scholar 

  68. H. K. Lyeo, D. G. Cahill, B. S. Lee, J. R. Abelson, M. H. Kwon, K. B. Kim, S. G. Bishop, and B. Cheong, Appl. Phys. Lett. 89, 151904 (2006).

    Article  ADS  Google Scholar 

  69. J. P. Reifenberg, M. A. Panzer, S. B. Kim, A. M. Gibby, Y. Zhang, S. Wong, H. S. P. Wong, E. Pop, and K. E. Goodson, Appl. Phys. Lett. 91, 111904 (2007).

    Article  ADS  Google Scholar 

  70. K. Ghosh, A. Kusiak, P. Noé, M. C. Cyrille, and J. L. Battaglia, Phys. Rev. B 101, 214305 (2020), arXiv: 2006.02625.

    Article  ADS  Google Scholar 

  71. R. Zheng, J. Gao, J. Wang, and G. Chen, Nat. Commun. 2, 289 (2011).

    Article  ADS  Google Scholar 

  72. S. A. Angayarkanni, and J. Philip, J. Phys. Chem. C 118, 13972 (2014).

    Article  Google Scholar 

  73. S. A. Angayarkanni, and J. Philip, J. Appl. Phys. 118, 094306 (2015).

    Article  ADS  Google Scholar 

  74. S. Harish, K. Ishikawa, S. Chiashi, J. Shiomi, and S. Maruyama, J. Phys. Chem. C 117, 15409 (2013).

    Article  Google Scholar 

  75. P. C. Sun, Y. L. Wu, J. W. Gao, G. A. Cheng, G. Chen, and R. T. Zheng, Adv. Mater. 25, 4938 (2013).

    Article  Google Scholar 

  76. R. J. Warzoha, R. M. Weigand, and A. S. Fleischer, Appl. Energy 137, 716 (2015).

    Article  Google Scholar 

  77. Y. Wu, X. Yan, P. Meng, P. Sun, G. Cheng, and R. Zheng, Carbon 94, 417 (2015).

    Article  Google Scholar 

  78. H. A. Barnes, Chem. Eng. J. 79, 84 (2000).

    Article  Google Scholar 

  79. H. Hu, M. Gopinadhan, and C. O. Osuji, Soft Matter 10, 3867 (2014).

    Article  ADS  Google Scholar 

  80. J. Shin, J. Sung, M. Kang, X. Xie, B. Lee, K. M. Lee, T. J. White, C. Leal, N. R. Sottos, P. V. Braun, and D. G. Cahill, Proc. Natl. Acad. Sci. 116, 5973 (2019).

    Article  ADS  Google Scholar 

  81. C. Li, Y. Ma, and Z. Tian, ACS Macro Lett. 7, 53 (2018).

    Article  Google Scholar 

  82. R. Shrestha, Y. Luan, S. Shin, T. Zhang, X. Luo, J. S. Lundh, W. Gong, M. R. Bockstaller, S. Choi, T. Luo, R. Chen, K. Hippalgaonkar, and S. Shen, Sci. Adv. 5, eaax3777 (2019).

    Article  ADS  Google Scholar 

  83. T. Zhang, and T. Luo, ACS Nano 7, 7592 (2013).

    Article  Google Scholar 

  84. J. A. Tomko, A. Pena-Francesch, H. Jung, M. Tyagi, B. D. Allen, M. C. Demirel, and P. E. Hopkins, Nat. Nanotech. 13, 959 (2018).

    Article  Google Scholar 

  85. J. Shin, M. Kang, T. Tsai, C. Leal, P. V. Braun, and D. G. Cahill, ACS Macro Lett. 5, 955 (2016).

    Article  Google Scholar 

  86. C. Liu, Y. Chen, and C. Dames, Phys. Rev. Appl. 11, 044002 (2019).

    Article  ADS  Google Scholar 

  87. P. E. Hopkins, C. Adamo, L. Ye, B. D. Huey, S. R. Lee, D. G. Schlom, and J. F. Ihlefeld, Appl. Phys. Lett. 102, 121903 (2013).

    Article  ADS  Google Scholar 

  88. B. M. Foley, M. Wallace, J. T. Gaskins, E. A. Paisley, R. L. Johnson-Wilke, J. W. Kim, P. J. Ryan, S. Trolier-McKinstry, P. E. Hopkins, and J. F. Ihlefeld, ACS Appl. Mater. Interfaces 10, 25493 (2018).

    Article  Google Scholar 

  89. J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, Nano Lett. 15, 1791 (2015).

    Article  ADS  Google Scholar 

  90. S. Yiğen, and A. R. Champagne, Nano Lett. 14, 289 (2014), arXiv: 1401.3030.

    Article  ADS  Google Scholar 

  91. K. N. Kalaidjiev, M. P. Mikhailov, G. I. Bozhanov, and S. R. Stoyanov, Phys. Stat. Sol. A 69, K163 (1982).

    Article  ADS  Google Scholar 

  92. S. Deng, J. Yuan, Y. Lin, X. Yu, D. Ma, Y. Huang, R. Ji, G. Zhang, and N. Yang, Nano Energy 82, 105749 (2021).

    Article  Google Scholar 

  93. S. Deng, D. Ma, G. Zhang, and N. Yang, J. Mater. Chem. A 9, 24472 (2021).

    Article  Google Scholar 

  94. J. Kimling, K. Nielsch, K. Rott, and G. Reiss, Phys. Rev. B 87, 497 (2013).

    Google Scholar 

  95. J. M. Ziman, Electrons and Phonons (Oxford University Press, Britain, 1960), pp. 1–20.

    MATH  Google Scholar 

  96. F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284, 1335 (1999).

    Article  ADS  Google Scholar 

  97. M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  98. J. Kimling, R. B. Wilson, K. Rott, J. Kimling, G. Reiss, and D. G. Cahill, Phys. Rev. B 91, 144405 (2015).

    Article  ADS  Google Scholar 

  99. R. Jin, Y. Onose, Y. Tokura, D. Mandrus, P. Dai, and B. C. Sales, Phys. Rev. Lett. 91, 146601 (2003).

    Article  ADS  Google Scholar 

  100. S. Dhara, H. S. Solanki, R. Arvind Pawan, V. Singh, S. Sengupta, B. A. Chalke, A. Dhar, M. Gokhale, A. Bhattacharya, and M. M. Deshmukh, Phys. Rev. B 84, 121307 (2011), arXiv: 1106.2880.

    Article  ADS  Google Scholar 

  101. H. T. Huang, M. F. Lai, Y. F. Hou, and Z. H. Wei, Nano Lett. 15, 2773 (2015).

    Article  ADS  Google Scholar 

  102. X. Zhao, J. C. Wu, Z. Y. Zhao, Z. Z. He, J. D. Song, J. Y. Zhao, X. G. Liu, X. F. Sun, and X. G. Li, Appl. Phys. Lett. 108, 242405 (2016), arXiv: 1606.02010.

    Article  ADS  Google Scholar 

  103. C. McGuire, K. Sawchuk, and A. Kavner, J. Appl. Phys. 124, 115902 (2018).

    Article  ADS  Google Scholar 

  104. A. V. Talyzin, O. Andersson, B. Sundqvist, A. Kurnosov, and L. Dubrovinsky, J. Solid State Chem. 180, 510 (2007).

    Article  ADS  Google Scholar 

  105. X. B. Li, K. Maute, M. L. Dunn, and R. G. Yang, Phys. Rev. B 81, 285 (2010).

    Google Scholar 

  106. H. Meng, D. Ma, X. Yu, L. Zhang, Z. Sun, and N. Yang, Int. J. Heat Mass Transfer 145, 118719 (2019).

    Article  Google Scholar 

  107. H. Meng, S. Maruyama, R. Xiang, and N. Yang, Int. J. Heat Mass Transfer 180, 121773 (2021).

    Article  Google Scholar 

  108. S. Li, X. Yu, H. Bao, and N. Yang, J. Phys. Chem. C 122, 13140 (2018).

    Article  Google Scholar 

  109. X. Wan, B. Demir, M. An, T. R. Walsh, and N. Yang, Int. J. Heat Mass Transfer 180, 121821 (2021).

    Article  Google Scholar 

  110. Y. Zeng, C. L. Lo, S. Zhang, Z. Chen, and A. Marconnet, Carbon 158, 63 (2020).

    Article  Google Scholar 

  111. T. Du, Z. Xiong, L. Delgado, W. Liao, J. Peoples, R. Kantharaj, P. R. Chowdhury, A. Marconnet, and X. Ruan, Nat. Commun. 12, 4915 (2021).

    Article  ADS  Google Scholar 

  112. D. Yu, Y. Liao, Y. Song, S. Wang, H. Wan, Y. Zeng, T. Yin, W. Yang, and Z. He, Adv. Sci. 7, 2000177 (2020).

    Article  Google Scholar 

  113. Y. Yang, and W. Gao, Chem. Soc. Rev. 48, 1465 (2019).

    Article  Google Scholar 

  114. Q. Song, M. An, X. Chen, Z. Peng, J. Zang, and N. Yang, Nanoscale 8, 14943 (2016).

    Article  Google Scholar 

  115. N. Yang, X. Ni, J. W. Jiang, and B. Li, Appl. Phys. Lett. 100, 093107 (2012), arXiv: 1207.0285.

    Article  ADS  Google Scholar 

  116. B. Y. Cao, and D. S. Qiao, Thermal Resistor, China Patent, ZL201810298324.6 (2020-04-24).

    Google Scholar 

  117. G. J. Hu, G. X. Cao, D. S. Qiao, and B. Y. Cao, J. Eng. Thermophys. 40, 1380 (2019).

    Google Scholar 

  118. A. Henry, R. Prasher, and A. Majumdar, Nat. Energy 5, 635 (2020).

    Article  ADS  Google Scholar 

  119. K. Menyhart, and M. Krarti, Build. Environ. 114, 203 (2017).

    Article  Google Scholar 

  120. S. J. M. Koenders, R. C. G. M. Loonen, and J. L. M. Hensen, Energy Build. 173, 409 (2018).

    Article  Google Scholar 

  121. K. Klinar, and A. Kitanovski, Renew. Sustain. Energy Rev. 118, 109571 (2020).

    Article  Google Scholar 

  122. R. I. Epstein, and K. J. Malloy, J. Appl. Phys. 106, 064509 (2009).

    Article  ADS  Google Scholar 

  123. B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).

    Article  ADS  Google Scholar 

  124. R. Ma, Z. Zhang, K. Tong, D. Huber, R. Kornbluh, Y. S. Ju, and Q. Pei, Science 357, 1130 (2017).

    Article  ADS  Google Scholar 

  125. D. J. Silva, B. D. Bordalo, A. M. Pereira, J. Ventura, and J. P. Araújo, Appl. Energy 93, 570 (2012).

    Article  Google Scholar 

  126. Y. Utaka, K. Hu, Z. Chen, and Y. Zhao, Appl. Thermal Eng. 155, 196 (2019).

    Article  Google Scholar 

  127. Q. Shu, J. Demko, and J. Fesmire, in IOP Conference Series: Materials Science and Engineering, edited by J. G. Weisend II (IOP Publishing, Wisconsin, 2017), p. 012133.

  128. M. J. DiPirro, and P. J. Shirron, Cryogenics 62, 172 (2014).

    Article  ADS  Google Scholar 

  129. V. P. Peshkov, and A. Y. Parshin, Sov. Phys. JETP 21, 258 (1965).

    ADS  Google Scholar 

  130. M. Krusius, D. N. Paulson, and J. C. Wheatley, Rev. Sci. Instrum. 49, 396 (1978).

    Article  ADS  Google Scholar 

  131. J. Bartlett, G. Hardy, I. Hepburn, R. Ray, and S. Weatherstone, Cryogenics 50, 647 (2010).

    Article  ADS  Google Scholar 

  132. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012), arXiv: 1108.6120.

    Article  ADS  Google Scholar 

  133. Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C. W. Qiu, Nat. Rev. Mater. 6, 488 (2021), arXiv: 2008.07964.

    Article  ADS  Google Scholar 

  134. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).

    Article  ADS  Google Scholar 

  135. S. Yang, J. Wang, G. Dai, F. Yang, and J. Huang, Phys. Rep. 908, 1 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  136. C. Z. Fan, Y. Gao, and J. P. Huang, Appl. Phys. Lett. 92, 251907 (2008).

    Article  ADS  Google Scholar 

  137. S. Narayana, and Y. Sato, Phys. Rev. Lett. 108, 214303 (2012).

    Article  ADS  Google Scholar 

  138. Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Phys. Rev. Lett. 115, 195503 (2015), arXiv: 1505.00971.

    Article  ADS  Google Scholar 

  139. X. Shen, Y. Li, C. Jiang, and J. Huang, Phys. Rev. Lett. 117, 055501 (2016).

    Article  ADS  Google Scholar 

  140. Y. Li, X. Shen, J. Huang, and Y. Ni, Phys. Lett. A 380, 1641 (2016).

    Article  ADS  Google Scholar 

  141. J. Li, Y. Li, P. C. Cao, T. Yang, X. F. Zhu, W. Wang, and C. W. Qiu, Adv. Mater. 32, 2003823 (2020).

    Article  Google Scholar 

  142. G. Xu, K. Dong, Y. Li, H. Li, K. Liu, L. Li, J. Wu, and C. W. Qiu, Nat. Commun. 11, 6028 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingYang Cao.

Additional information

The work was supported by the National Natural Science Foundation of China (Grant Nos. 51825601, and U20A20301).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cao, B. Thermal smart materials with tunable thermal conductivity: Mechanisms, materials, and applications. Sci. China Phys. Mech. Astron. 65, 117003 (2022). https://doi.org/10.1007/s11433-022-1925-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1925-2

Keywords

Navigation