Skip to main content
Log in

Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Superhydrophobic coatings have been widely developed to endue the materials with antibacterial, self-cleaning, antiseptic, and some other multifunctionalities. Fluorochemicals are the most commonly used superhydrophobic coatings; however, the released toxic substances from fluorinated polymers are a significant source of water pollution and even a threat to human health. With the increasingly great attention to the environment, it is imperative to exploit green and effective hydrophobic coatings. Here, a nanofibrillated cellulose-based multifunctional superhydrophobic coating (NMSC) was fabricated by using an efficient silylation process from cellulose, tetraethyl orthosilicate, and cetyl trimethoxysilane. Microscopic, chemical structural, and thermal properties analyses revealed that the NMSC has nanoroughness, low surface energy, and good thermal stability. More importantly, the NMSC displayed an unprecedented hydrophobic and self-cleaning performance (water contact angle ~ 165°). The NMSC superhydrophobic coating can realize long-term effective barriers to many fluids, including strong acid (pH 1), strong alkali (pH 13), alcohols, alkanes, esters, and some other organic solvents. Moreover, the NMSC also exhibited a certain degree of antibacterial performance. This work provides a good approach for not only the high-value application of cellulose but also the development of ecological and sustainable multifunctional coatings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Razavi SMR, Oh J, Haasch RT, Kim K, Masoomi M, Bagheri R, Slauch JM, Miljkovic N (2019) Environment-friendly antibiofouling superhydrophobic coatings. ACS Sustain Chem Eng 7(17):14509–14520. https://doi.org/10.1021/acssuschemeng.9b02025

    Article  CAS  Google Scholar 

  2. Chen S, Song Y, Xu F (2018) Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface. ACS Sustain Chem Eng 6(4):5173–5181. https://doi.org/10.1021/acssuschemeng.7b04814

    Article  CAS  Google Scholar 

  3. Yang X, Tian L, Wang W, Fan Y, Sun J, Zhao J, Ren L (2020) Bio-inspired superhydrophobic self-healing surfaces with synergistic anticorrosion performance. J Bionic Eng 17(6):1196–1208. https://doi.org/10.1007/s42235-020-0094-4

    Article  Google Scholar 

  4. Kang L, Li J, Zeng J, Gao W, Xu J, Cheng Z, Chen K, Wang B (2019) A water solvent-assisted condensation polymerization strategy of superhydrophobic lignocellulosic fibers for efficient oil/water separation. J Mater Chem A 7(27):16447–16457. https://doi.org/10.1039/c9ta04815d

    Article  CAS  Google Scholar 

  5. Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed Engl 54(11):3387–3399. https://doi.org/10.1002/anie.201409911

    Article  CAS  Google Scholar 

  6. Mousavi SMA, Pitchumani R (2021) A study of corrosion on electrodeposited superhydrophobic copper surfaces. Corros Sci. https://doi.org/10.1016/j.corsci.2021.109420

    Article  Google Scholar 

  7. Chobaomsup V, Metzner M, Boonyongmaneerat Y (2020) Superhydrophobic surface modification for corrosion protection of metals and alloys. J Coat Technol Res 17(3):583–595. https://doi.org/10.1007/s11998-020-00327-2

    Article  CAS  Google Scholar 

  8. Usman J, Othman MHD, Ismail AF, Rahman MA, Jaafar J, Raji YO, Gbadamosi AO, El Badawy TH, Said KAM (2021) An overview of superhydrophobic ceramic membrane surface modification for oil-water separation. J Market Res 12:643–667. https://doi.org/10.1016/j.jmrt.2021.02.068

    Article  CAS  Google Scholar 

  9. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169(2):80–105. https://doi.org/10.1016/j.cis.2011.08.005

    Article  CAS  Google Scholar 

  10. Lu Y, Song J, Liu X, Xu W, Xing Y, Wei Z (2012) Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method. ACS Sustain Chem Eng 1(1):102–109. https://doi.org/10.1021/sc3000527

    Article  CAS  Google Scholar 

  11. Wu X, Fu Q, Kumar D, Ho JWC, Kanhere P, Zhou H, Chen Z (2016) Mechanically robust superhydrophobic and superoleophobic coatings derived by sol–gel method. Mater Des 89:1302–1309. https://doi.org/10.1016/j.matdes.2015.10.053

    Article  CAS  Google Scholar 

  12. Lu J, Zhu W, Dai L, Si C, Ni Y (2019) Fabrication of thermo-and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr Polym 215:289–295. https://doi.org/10.1016/j.carbpol.2019.03.100

  13. Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA (2011) Superhydrophobic-superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays. Angew Chem Int Ed Engl 50(36):8424–8427. https://doi.org/10.1002/anie.201102545

    Article  CAS  Google Scholar 

  14. Nicolas M, Guittard F, Géribaldi S (2006) Synthesis of stable super water- and oil-repellent polythiophene films. Angew Chem 118(14):2309–2312. https://doi.org/10.1002/ange.200503892

    Article  Google Scholar 

  15. Li Y, Liu F, Sun J (2009) A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. Chem Commun (Camb) 19:2730–2732. https://doi.org/10.1039/b900804g

    Article  CAS  Google Scholar 

  16. Kang L, Wang B, Zeng J, Cheng Z, Li J, Xu J, Gao W, Chen K (2020) Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chem 22(2):504–512. https://doi.org/10.1039/c9gc03861b

    Article  CAS  Google Scholar 

  17. Ellinas K, Dimitrakellis P, Sarkiris P, Gogolides E (2021) A review of fabrication methods, properties and applications of superhydrophobic metals. Processes. https://doi.org/10.3390/pr9040666

    Article  Google Scholar 

  18. Wu W, Wang X, Liu X, Zhou F (2009) Spray-coated fluorine-free superhydrophobic coatings with easy repairability and applicability. ACS Appl Mater Interfaces 1(8):1656–1661. https://doi.org/10.1021/am900136k

    Article  CAS  Google Scholar 

  19. An L, Si C, Bae JH, Jeong H, Kim YS (2020) One-step silanization and amination of lignin and its adsorption of Congo red and Cu(II) ions in aqueous solution. Int J Biol Macromol 159:222–230. https://doi.org/10.1016/j.ijbiomac.2020.05.072

    Article  CAS  Google Scholar 

  20. An L, Si C, Wang G, Sui W, Tao Z (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crops Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009

    Article  CAS  Google Scholar 

  21. Chen S, Wang G, Sui W, Parvez AM, Dai L, Si C (2020) Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Ind Crops Prod 145:112164. https://doi.org/10.1016/j.indcrop.2020.112164

    Article  CAS  Google Scholar 

  22. Chen S, Wang G, Sui W, Parvez AM, Si C (2020) Synthesis of lignin-functionalized phenolic nanosphere supported Ag nanoparticles with excellent dispersion stability and catalytic performance. Green Chem 22(9):2879–2888. https://doi.org/10.1039/C9GC04311J

    Article  CAS  Google Scholar 

  23. Dai L, Cao Q, Wang K, Han S, Si C, Liu D, Liu Y (2020) High efficient recovery of L-lactide with lignin-based filler by thermal degradation. Ind Crops Prod 143:111954. https://doi.org/10.1016/j.indcrop.2019.111954

    Article  CAS  Google Scholar 

  24. Si C, Liu Z, Kim J, Bae Y (2008) Structure elucidation of phenylethanoid glycosides from Paulownia tomentosa Steud. var. tomentosa wood. Holzforschung 62:197–200. https://doi.org/10.1515/HF.2008.047

    Article  CAS  Google Scholar 

  25. Dai L, Liu R, Si C (2018) A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(L-lactide). Green Chem 20:1777. https://doi.org/10.1039/c7gc03863a

    Article  CAS  Google Scholar 

  26. Dai L, Liu R, Hu L-Q, Zou Z-F, Si C-L (2017) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5(9):8241–8249. https://doi.org/10.1021/acssuschemeng.7b01903

    Article  CAS  Google Scholar 

  27. Li X, Lu X, Nie S, Liang M, Yu Z, Duan B et al (2020) Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent. Ind Crops Prod 145:112154. https://doi.org/10.1016/j.indcrop.2020.112154

    Article  CAS  Google Scholar 

  28. Xu J, Li C, Dai L, Xu C, Zhong Y, Yu F, Si C (2020) Biomass fractionation and lignin fractionation towards lignin valorization. Chemsuschem 13(17):4284–4295. https://doi.org/10.1002/cssc.202001491

    Article  CAS  Google Scholar 

  29. Xu R, Liu K, Du H, Liu H, Cao X, Zhao X et al (2020) Falling leaves return to their roots: a review on the preparation of gamma-valerolactone from lignocellulose and its application in the conversion of lignocellulose. Chemsuschem 13(24):6461–6476. https://doi.org/10.1002/cssc.202002008

    Article  CAS  Google Scholar 

  30. Dai L, Lu J, Kong F, Liu K, Wei H, Si C (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2(3):462–470. https://doi.org/10.1007/s42114-019-00112-9

    Article  CAS  Google Scholar 

  31. Fatima A, Yasir S, Ul-Islam M, Kamal T, Ahmad MW, Abbas Y, Manan S, Ullah MW, Yang G (2021) Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00369-z

    Article  Google Scholar 

  32. Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crops Prod 130:184–197. https://doi.org/10.1016/j.indcrop.2018.12.082

    Article  CAS  Google Scholar 

  33. Liu W, Zhang S, Liu K, Yang H, Lin Q, Xu T, Song X, Du H, Bai L, Yao S, Si C (2023) Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. J Clean Prod 384:135582. https://doi.org/10.1016/j.jclepro.2022.135582

  34. Liu W, Du H, Liu H, Xie H, Xu T, Zhao X et al (2020) Highly efficient and sustainable preparation of carboxylic and thermostable cellulose nanocrystals via FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain Chem Eng 8(44):16691–16700. https://doi.org/10.1021/acssuschemeng.0c06561

    Article  CAS  Google Scholar 

  35. Liu W, Du H, Liu K, Liu H, Xie H, Si C, Pang B et al (2021) Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohyd Polym 267:118220. https://doi.org/10.1016/j.carbpol.2021.118220

    Article  CAS  Google Scholar 

  36. Liu W, Liu K, Wang Y, Lin Q, Liu J, Du H et al (2022) Sustainable production of cellulose nanofibrils from kraft pulp for the stabilization of oil-in-water pickering emulsions. Ind Crops Prod 185:115123. https://doi.org/10.1016/j.indcrop.2022.115123

    Article  CAS  Google Scholar 

  37. Wang H, Du H, Liu K, Liu H, Xu T, Zhang S et al (2021) Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohyd Polym 266:118107. https://doi.org/10.1016/j.carbpol.2021.118107

    Article  CAS  Google Scholar 

  38. Wang H, Xie H, Du H, Wang X, Liu W, Duan Y et al (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohyd Polym 239:116233. https://doi.org/10.1016/j.carbpol.2020.116233

    Article  CAS  Google Scholar 

  39. Wang H, Zhang M, Hu J, Du H, Xu T, Si C (2022) Sustainable preparation of surface functionalized cellulose nanocrystals and their application for pickering emulsions. Carbohyd Polym 297:120062. https://doi.org/10.1016/j.carbpol.2022.120062

    Article  CAS  Google Scholar 

  40. Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:e7923068. https://doi.org/10.1155/2018/7923068

    Article  CAS  Google Scholar 

  41. Xie H, Zou Z, Du H, Zhang X, Wang X, Yang X et al (2019) Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohyd Polym 223:115116. https://doi.org/10.1016/j.carbpol.2019.115116

    Article  CAS  Google Scholar 

  42. Xu R, Du H, Liu C, Liu H, Wu M, Zhang X et al (2021) An efficient and magnetic adsorbent prepared in a dry process with enzymatic hydrolysis residues for wastewater treatment. J Clean Prod 313:127834. https://doi.org/10.1016/j.jclepro.2021.127834

    Article  CAS  Google Scholar 

  43. Liu K, Du H, Zheng T, Liu W, Zhang M, Liu H et al (2021) Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem 23(24):9723–9746. https://doi.org/10.1039/D1GC02841C

    Article  CAS  Google Scholar 

  44. Cherian RM, Tharayil A, Varghese RT, Antony T, Kargarzadeh H, Chirayil CJ, Thomas S (2022) A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydr Polym 282:119123. https://doi.org/10.1016/j.carbpol.2022.119123

    Article  CAS  Google Scholar 

  45. Xie Z, Tian Z, Liu S, Ma H, Ji X-X, Si C (2022) Effects of different amounts of cellulase on the microstructure and soluble substances of cotton stalk bark. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00400-3

    Article  Google Scholar 

  46. Ran F, Li C, Hao Z, Zhang X, Dai L, Si C, Shen Z, Qiu Z, Wang J (2022) Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00460-z

    Article  Google Scholar 

  47. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T et al (2022) Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Letters 14(1):104. https://doi.org/10.1007/s40820-022-00849-x

    Article  CAS  Google Scholar 

  48. Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang T-S et al (2021) Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohyd Polym 270:118372. https://doi.org/10.1016/j.carbpol.2021.118372

    Article  CAS  Google Scholar 

  49. Du H, Parit M, Liu K, Zhang M, Jiang Z, Huang T-S et al (2021) Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl Mater Interfaces 13(27):32115–32125. https://doi.org/10.1021/acsami.1c06647

    Article  CAS  Google Scholar 

  50. Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Zhou F, Jiang X (2018) Nanocellulose-based antibacterial materials. Adv Healthc Mater 7(20):e1800334. https://doi.org/10.1002/adhm.201800334

    Article  CAS  Google Scholar 

  51. He Y, Li G, Hwang K-H, Boluk Y, Claesson PM (2021) Nano-scale mechanical and wear properties of a corrosion protective coating reinforced by cellulose nanocrystals – initiation of coating degradation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.147789

    Article  Google Scholar 

  52. Joram Mendoza D, Mouterde LMM, Browne C, Singh Raghuwanshi V, Simon GP, Garnier G, Allais F (2020) Grafting nature-inspired and bio-based phenolic esters onto cellulose nanocrystals gives biomaterials with photostable anti-UV properties. Chemsuschem 13(24):6552–6561. https://doi.org/10.1002/cssc.202002017

    Article  CAS  Google Scholar 

  53. Yu Z, Dhital R, Wang W, Sun L, Zeng W, Mustapha A, Lin M (2019) Development of multifunctional nanocomposites containing cellulose nanofibrils and soy proteins as food packaging materials. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100366

    Article  Google Scholar 

  54. Liu W, Du H, Zhang M, Liu K, Liu H, Xie H et al (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8(20):7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

    Article  CAS  Google Scholar 

  55. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  Google Scholar 

  56. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H et al (2022) Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14:14902–14912. https://doi.org/10.1039/D2NR00468B

    Article  CAS  Google Scholar 

  57. Liu K, Liu W, Li W, Duan Y, Zhou K, Zhang S et al (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  58. Du H, Zhang M, Liu K, Parit M, Jiang Z, Zhang X et al (2022) Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J 428:131994. https://doi.org/10.1016/j.cej.2021.131994

    Article  CAS  Google Scholar 

  59. Li W, Wang G, Sui W, Xu T, Li Z, Parvez AM, Si C (2022) Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196:819–827. https://doi.org/10.1016/j.carbon.2022.05.053

    Article  CAS  Google Scholar 

  60. Liu S, Du H, Liu K, Ma M-G, Kwon Y-E, Si C, Ji X-X et al (2021) Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4(4):1367–1383. https://doi.org/10.1007/s42114-021-00344-8

    Article  CAS  Google Scholar 

  61. Liu H, Du H, Zheng T, Liu K, Ji X, Xu T, Zhang X et al (2021) Cellulose based composite foams and aerogels for advanced energy storage devices. Chem Eng J 426:130817. https://doi.org/10.1016/j.cej.2021.130817

    Article  CAS  Google Scholar 

  62. Liu H, Xu T, Cai C, Liu K, Liu W, Zhang M et al (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Func Mater 32(26):2113082. https://doi.org/10.1002/adfm.202113082

    Article  CAS  Google Scholar 

  63. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5(2):1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  64. Xu T, Du H, Liu H, Liu W, Zhang X, Si C et al (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33(48):2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  Google Scholar 

  65. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H et al (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater 48:244–262. https://doi.org/10.1016/j.ensm.2022.03.013

    Article  Google Scholar 

  66. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  CAS  Google Scholar 

  67. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H et al (2021) Lignin-based electrodes for energy storage application. Ind Crops Prod 165:113425. https://doi.org/10.1016/j.indcrop.2021.113425

    Article  CAS  Google Scholar 

  68. Liu K, Du H, Liu W, Liu H, Zhang M, Xu T, Si C (2022) Cellulose nanomaterials for oil exploration applications. Polym Rev 62(3):585–625. https://doi.org/10.1080/15583724.2021.2007121

    Article  CAS  Google Scholar 

  69. Liu K, Du H, Zheng T, Liu H, Zhang M, Zhang R et al (2021) Recent advances in cellulose and its derivatives for oilfield applications. Carbohyd Polym 259:117740. https://doi.org/10.1016/j.carbpol.2021.117740

    Article  CAS  Google Scholar 

  70. Fotie G, Rampazzo R, Ortenzi MA, Checchia S, Fessas D, Piergiovanni L (2017) The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials. Polymers (Basel). https://doi.org/10.3390/polym9090415

    Article  Google Scholar 

  71. Lu J, Han X, Dai L, Li C, Wang J, Zhong Y, Yu F, Si C (2020) Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness. Carbohyd Polym 250:117010. https://doi.org/10.1016/j.carbpol.2020.117010

    Article  CAS  Google Scholar 

  72. Huang M, Tang Y, Wang X, Zhu P, Chen T, Zhou Y (2021) Preparation of polyaniline/cellulose nanocrystal composite and its application in surface coating of cellulosic paper. Prog Org Coat 159:160452. https://doi.org/10.1016/j.porgcoat.2021.106452

    Article  CAS  Google Scholar 

  73. Hu F, Zeng J, Cheng Z, Wang X, Wang B, Zeng Z, Chen K (2021) Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydr Polym 254:117474. https://doi.org/10.1016/j.carbpol.2020.117474

    Article  CAS  Google Scholar 

  74. Jin K, Tang Y, Liu J, Wang J, Ye C (2021) Nanofibrillated cellulose as coating agent for food packaging paper. Int J Biol Macromol 168:331–338. https://doi.org/10.1016/j.ijbiomac.2020.12.066

    Article  CAS  Google Scholar 

  75. Wang S, Gao W, Chen K, Xiang Z, Zeng J, Wang B, Xu J (2018) Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment. Bioresour Technol 267:426–430. https://doi.org/10.1016/j.biortech.2018.07.067

    Article  CAS  Google Scholar 

  76. Yang G, Ma G, He M, Ji X, Li W, Youn HJ, Lee HL, Chen J (2021) Comparison of effects of sodium chloride and potassium chloride on spray drying and redispersion of cellulose nanofibrils suspension. Nanomaterials (Basel). https://doi.org/10.3390/nano11020439

    Article  Google Scholar 

  77. Li J, Xu C, Zhang Y, Wang R, Zha F, She H (2016) Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. J Mater Chem A 4(40):15546–15553. https://doi.org/10.1039/c6ta07535e

    Article  CAS  Google Scholar 

  78. Zhang K, Yang X, Zhu N, Wang Z-C, Yan H (2017) Environmentally benign paints for superhydrophobic coatings. Colloid Polym Sci 295(4):709–714. https://doi.org/10.1007/s00396-017-4053-5

    Article  CAS  Google Scholar 

  79. Wu X, Wu L, Tan J, Chen GY, Owens G, Xu H (2018) Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. J Mater Chem A 6(26):12267–12274. https://doi.org/10.1039/c8ta03280g

    Article  CAS  Google Scholar 

  80. Lakshmi RV, Bera P, Anandan C, Basu BJ (2014) Effect of the size of silica nanoparticles on wettability and surface chemistry of sol–gel superhydrophobic and oleophobic nanocomposite coatings. Appl Surf Sci 320:780–786. https://doi.org/10.1016/j.apsusc.2014.09.150

    Article  CAS  Google Scholar 

  81. You X, Hu Q, Hu X, Chen H, Yang W, Zhang X (2019) An effective, economical and ultra-fast method for hydrophobic modification of NCC using poly(methylhydrogen)siloxane. Polymers (Basel). https://doi.org/10.3390/polym11060963

    Article  Google Scholar 

  82. Kang L, Shi L, Zeng Q, Liao B, Wang B, Guo X (2021) Melamine resin-coated lignocellulose fibers with robust superhydrophobicity for highly effective oil/water separation. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.119737

    Article  Google Scholar 

  83. Pashinin AS (2016) Interaction of superhydrophobic materials with aqueous solutions and organic solvents. Russ Chem Bull 65(1):98–102. https://doi.org/10.1007/s11172-016-1270-x

    Article  CAS  Google Scholar 

  84. Manukumar HM, Umesha S (2017) Photocrosslinker technology: an antimicrobial efficacy of cinnamaldehyde cross-linked low-density polyethylene (Cin-C-LDPE) as a novel food wrapper. Food Res Int 102:144–155. https://doi.org/10.1016/j.foodres.2017.09.095

    Article  CAS  Google Scholar 

  85. Liu F, Turker Saricaoglu F, Avena-Bustillos RJ, Bridges DF, Takeoka GR, Wu VCH, Chiou BS, Wood DF, McHugh TH, Zhong F (2018) Preparation of fish skin gelatin-based nanofibers incorporating cinnamaldehyde by solution blow spinning. Int J Mol Sci. https://doi.org/10.3390/ijms19020618

    Article  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (Grant No. 2019YFC1905900), the National Natural Science Foundation of China (Grant No. 32230070), Natural Science Foundation of Shandong Province of China (Grant No. ZR2021ZD38, ZR2020QE097), Jinan Innovation Team (Grant No. 2021GXRC023), the QUTJBZ Program (No. 2022JBZ01-05), and Taishan Scholars Program, and the Foundation (GZKF202122, GZKF202204) of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Xingxiang Ji supervised the project. Mengting Ye and Xingxiang Ji designed the experiments. Mengting Ye performed the experiments. All authors discussed experiments and results. Mengting Ye wrote the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Chuanling Si.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, M., Wang, S., Ji, X. et al. Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance. Adv Compos Hybrid Mater 6, 30 (2023). https://doi.org/10.1007/s42114-022-00602-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00602-3

Keywords

Navigation