Skip to main content

Advertisement

Log in

Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Manipulating the structure of electroactive materials with hierarchical frameworks can boost the electrochemical properties. The soaring fidelity of mixed nanostructured materials in electrochemistry verifies their candidature as appropriate electrodes for sustainable energy storage and conversion devices. Herein, we present facile and economical techniques to develop three-dimensional (3D) hierarchical nanoframes-like sulfurized nickel aluminum (sulfurized NiAl) as a positive electrode material and ternary bismuth cerium sulfide (Bi-Ce-S) as the negative electrode material for constructing an aqueous asymmetric supercapacitor system. These hierarchical architectures with well-developed pores and hollow spaces can capitalize the surface-to-volume ratio and maximize the contact area between the active material and electrolyte, therefore immensely reduce the ion penetration distances and promote the electron transport rates. Tuning the conductivity of electrode materials affords rich contact sites and integrates the features of all components, thus resulting in better electrochemical enhancements. As expected, sulfurized NiAl nanosheet arrays with unique porous architectures exhibit a good electrochemical performance with commendable specific capacitance of 1230.6 F g–1 at 1 A g–1 current density and stable rate capability (69.8% up to 20 A g–1). In addition, the obtained Bi-Ce-S hybrid provides a high specific capacitance (411.7 F g–1 at 1 A g–1) with 92.2% capacitance retention even after 4000 cycles. An asymmetric supercapacitor (ASC) device is established with the designed composites, which realizes a high energy density of 38.5 Wh kg–1 at a power density of 750 W kg–1 and reveals an enhanced cycle stability (80.6% retention after 8000 GCD times).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Titirici MM, White RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials Chem Soc Rev 44:250–290

    CAS  Google Scholar 

  2. Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:1–13

    Google Scholar 

  3. Wu N, Bai X, Pan D, Dong B, Wei R, Naik N, Patil RR, Guo Z (2021) Recent advances of asymmetric supercapacitors. Adv Mater Interfaces 8:2001710

    CAS  Google Scholar 

  4. Khalafallah D, Zou Q, Zhi M, Hong Z (2020) Tailoring hierarchical yolk-shelled nickel cobalt sulfide hollow cages with carbon tuning for asymmetric supercapacitors and efficient urea electrocatalysis. Electrochim Acta 350:136399

    CAS  Google Scholar 

  5. Khalafallah D, Ouyang C, Ehsan MA, Zhi M, Hong Z (2020) Complexing of NixMny sulfides microspheres via a facile solvothermal approach as advanced electrode materials with excellent charge storage performances. Hydrogen Energy 45:6885–6896

    CAS  Google Scholar 

  6. Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  7. Rehman S, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Amir M, Wang J (2021) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78

    Google Scholar 

  8. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Fan J, Ding T, Ryu JE, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng Sci 9:50–59

    Google Scholar 

  9. Luo F, Liu D, Cao T, Cheng H, Kuang J, Deng Y, Xie W (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater 4:591–601

    CAS  Google Scholar 

  10. Wang W, Deng X, Liu D, Luo F, Cheng H, Cao T, Li Y, Deng Y, Xie W (2021) Broadband radar-absorbing performance of square-hole structure. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00376-0

    Article  Google Scholar 

  11. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  12. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    CAS  Google Scholar 

  13. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    CAS  Google Scholar 

  14. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715

    CAS  Google Scholar 

  15. Ramalingam S, Subramania A (2021) Effective removal of nitrates from the drinking water by chemical and electrochemical methods. Eng Sci 15:80–88

    CAS  Google Scholar 

  16. Borate H, Bhorde A, Waghmare A, Nair S, Pandharkar S, Punde A, Shinde P, Vairale P, Jadkar V, Waykar R, Rondiya S, Hase Y, Aher R, Patil N, Prasad M, Jadkar S (2021) Single-step electrochemical deposition of CZTS thin films with enhanced photoactivity. ES Mater Manuf 11:30–39

    CAS  Google Scholar 

  17. Khalafallah D, Zhi M, Hong Z (2021) Rational engineering of hierarchical mesoporous CuxFeySe battery-type electrodes for asymmetric hybrid supercapacitors. Ceram. Int. 47:29081–29090

    CAS  Google Scholar 

  18. Khalafallah D, Li XY, Zhi MJ (2020) Hong ZL (2020) 3D hierarchical NiCo layered double hydroxide nanosheet arrays decorated with noble metal nanoparticles for enhanced urea electrocatalysis. ChemElectroChem 7:163–174

    CAS  Google Scholar 

  19. Khalafallah D, Ouyang C, Zhi M, Hong Z (2019) Heterostructured nickel-cobalt selenide immobilized onto porous carbon frameworks as an advanced anode material for urea electrocatalysis. ChemElectroChem 6:5191–5202

  20. Deokate RJ (2021) Chemically deposited NiCo O thin films for electrochemical study. ES Mater Manuf 11:16–19

  21. Gite AB, Palve BM, Gaikwad VB, Shinde SD, Jain GH, Pathan HM (2021) Physicochemical properties and thermoelectric studies of electrochemically deposited lead telluride films. ES Mater Manuf 11:40–49

    CAS  Google Scholar 

  22. Khalafallah D, Zhi M, Hong Z (2019) Recent trends in synthesis and investigation of nickel phosphide compound/hybrid-based electrocatalysts towards hydrogen generation from water electrocatalysis. Top Curr Chem 377:29

    Google Scholar 

  23. Khalafallah D, Zhi M, Hong Z (2021) Development trends on nickel-based electrocatalysts for direct hydrazine fuel cells. ChemCatChem 13:81–110

    CAS  Google Scholar 

  24. Khalafallah D, Quan X, Ouyang C, Zhia M, Hong Z (2021) Heteroatoms doped porous carbon derived from waste potato peel for supercapacitors. Renew Energy 170:60–71

    CAS  Google Scholar 

  25. Li X, Du D, Zhang Y, Xing W, Xue Q, Yan Z (2017) Layered double hydroxides toward high-performance supercapacitors. J Mater Chem A 5:15460–15485

    CAS  Google Scholar 

  26. Li L, Li R, Gai S, He F, Yang P (2014) Facile fabrication and electrochemical performance of flower-like Fe3O4@C@layered double hydroxide (LDH) composite. J Mater Chem A 2:8758–8765

    CAS  Google Scholar 

  27. Liang H, Lin J, Jia H, Chen S, Qi J, Cao J, Lin T, Fei W, Feng J (2018) Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. J Mater Chem A 6:15040–15046

    CAS  Google Scholar 

  28. Zong W, Lai F, He G, Feng J, Wang W, Lian R, Miao YE, Wang GC, Parkin IP, Liu T (2018) Sulfur-deficient bismuth sulfide/nitrogen-doped carbon nanofibers as advanced free-standing electrode for asymmetric supercapacitors. Small 14:1801562

    Google Scholar 

  29. Khalafallah D, Miao J, Zhi M, Hong Z (2021) Confining self-standing CoSe2 nanostructures and Fe3C wrapped N-doped carbon frameworks with enhanced energy storage performances. Appl Surf Sci 564:150449

    CAS  Google Scholar 

  30. Khalafallah D, Zhi M, Hong Z (2022) Bi-Fe chalcogenides anchored carbon matrix and structured core-shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors. J Colloid Interface Sci 606:1352–1363

    CAS  Google Scholar 

  31. Khalafallah D, Li X, Zhi M, Hong Z (2021) Nanostructuring nickel–zinc–boron/graphitic carbon nitride as the positive electrode and BiVO4-immobilized nitrogen-doped defective carbon as the negative electrode for asymmetric capacitors. ACS Appl Nano Mater 4:14258–14273

    CAS  Google Scholar 

  32. Yan M, Yao Y, Wen J, Long L, Kong M, Zhang G, Liao X, Yin G, Huang Z (2016) Construction of a hierarchical NiCo2S4@PPy core−shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces 8:24525–24535

    CAS  Google Scholar 

  33. Fu F, Wang H, Yang D, Qiu X, Li Z, Qin Y (2022) Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors. J Colloid Interface Sci 617:694–703

    CAS  Google Scholar 

  34. Shinde NM, Xia QX, Yun JM, Mane RS, Kim KH (2018) Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS Appl Mater Interfaces 10:11037–11047

    CAS  Google Scholar 

  35. Kim SJ, Sharma V, Kshetri T, Kim NH, Lee JH (2022) Freestanding binder-free electrodes with nanodisk-needle-like MnCuCo-LTH and Mn1Fe2S2 porous microthorns for high-performance quasi-solid-state supercapacitors. ACS Appl Mater Interfaces 14:12523−12537

  36. Xie D, Su Q, Dong Z, Zhang J, Du G (2013) L-cysteine-assisted preparation of porous NiO hollow microspheres with enhanced performance for lithium storage. CrystEngComm 15:8314–8319

    CAS  Google Scholar 

  37. Wang Y, Zhu Q, Zhang H (2005) Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chem Commun 5231–5233

  38. Ding R, Chen Q, Luo Q, Zhou L, Wang Y, Zhang Y, Fan G (2020) Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem 22:835–842

    CAS  Google Scholar 

  39. Tong G, Yuan J, Wu W, Hu Q, Qian H, Li L, Shen J (2012) Flower-like Co superstructures: morphology and phase evolution mechanism and novel microwave electromagnetic characteristics. CrystEngComm 14:2071–2079

    CAS  Google Scholar 

  40. Li B, Liu M, Zhong W, Xu J, Zhang X, Zhang X, Zhang X, Chen Y (2021) Partially contacted NixSy@N, S-codoped carbon yolk-shelled structures for efficient microwave absorption. Carbon 182:276–286

    CAS  Google Scholar 

  41. Khalafallah D, Zhi M, Hong Z (2019) Shape-dependent electrocatalytic activity of carbon reinforced Ni2P hybrids toward urea electrocatalysis. Energy Technol 7:1900548

    Google Scholar 

  42. Khalafallah D, Ouyang C, Zhi M, Hong Z (2020) Synthesis of porous Ag2S−NiCo2S4 hollow architecture as effective electrode material with high capacitive performances. Nanotechnology 31:475401

    CAS  Google Scholar 

  43. Wu S, Hui KS, Hui KN, Kim KH (2017) Electrostatic-induced assembly of graphene-encapsulated carbon@nickel−aluminum layered double hydroxide core−shell spheres hybrid structure for high-energy and high-power-density asymmetric supercapacitor. ACS Appl Mater Interfaces 9:1395–1406

    CAS  Google Scholar 

  44. Zou J, Xie D, Zhao F, Wu H, Niu Y, Li Z, Zou Q, Deng F, Zhang Q, Zeng X (2021) Microwave rapid synthesis of nickel cobalt sulfides/CNTs composites as superior cycling ability electrode materials for supercapacitors. J Mater Sci 56:1561–1576

    CAS  Google Scholar 

  45. Li C, Balamurugan J, Nguyen DC, Kim NH, Lee JH (2020) Hierarchical manganese-nickel sulfide nanosheet arrays as an advanced electrode for all-solid-state asymmetric supercapacitors. ACS Appl Mater Interfaces 12:21505–21514

    CAS  Google Scholar 

  46. Xu R, Xu D, Zeng Z, Liu D (2022) CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem Eng J 427:130796

    CAS  Google Scholar 

  47. Qin Y, Xue C, Yu H, Wen Y, Zhang L, Li Y (2021) The construction of bio-inspired hierarchically porous graphene aerogel for efficiently organic pollutants absorption. J Hazard Mater 419:126441

    CAS  Google Scholar 

  48. Cheng C, Shi J, Wen L, Dong C-L, Huang Y-C, Zhang Y, Zong S, Diao Z, Shen S, Guo L (2021) Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation. Carbon 181:193–203

    CAS  Google Scholar 

  49. Chen G, Zhu Z, Liu H, Wu Y, Zhu C (2013) Preparation of SiO2 coated Ce2S3 red pigment with improved thermal stability. J Rare Earth 31:891–896

    Google Scholar 

  50. Rahman MM, Ahmed J, Asiri AM (2017) A glassy carbon electrode modified with γ-Ce2S3-decorated CNT nanocomposites for uric acid sensor development: a real sample analysis. RSC Adv 7:14649–14659

    CAS  Google Scholar 

  51. Bera S, Ghosh S, Basu RN (2018) Fabrication of Bi2S3/ZnO heterostructures: an excellent photocatalyst for visible-light-driven hydrogen generation and photoelectrochemical properties. New J Chem 42:541–554

    CAS  Google Scholar 

  52. Wang L, Meng F, Li K, Lu F (2013) Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydro-thermal method. Appl Surf Sci 286:269–272

    CAS  Google Scholar 

  53. Gong J, Meng F, Yang X, Fan Z, Li H (2016) Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties. J Alloys Compd 689(2016):606–616

    CAS  Google Scholar 

  54. Khalafallah D, Wu Z, Zhi M, Hong Z (2020) Rational designing of porous structured nickel manganese sulfides hexagonal sheets-in-cage structures as an advanced electrode material for high-performance electrochemical capacitors. Chem Eur J 26:2251–2262

    CAS  Google Scholar 

  55. Khalafallah D, Miao J, Zhi M, Hong Z (2021) Structuring graphene quantum dots anchored CuO for high-performance hybrid supercapacitors. J Taiwan Inst Chem Eng 122:168–175

    CAS  Google Scholar 

  56. Malak-Polaczyk A, Vix-Guterl C, Frackowiak E (2010) Carbon/layered double hydroxide (LDH) composites for supercapacitor application. Energy Fuel 24:3346–3351

    CAS  Google Scholar 

  57. Ma CJ, Chen Y, Zhu C, Chen Q, Song W-L, Jiao S, Chen H, Fang D (2019) Bismuth ferrite: an abnormal perovskite with electrochemical extraction of ions from A site. J Mater Chem A 7:12176–12190

    CAS  Google Scholar 

  58. Khalafallah D, Huang W, Wunn M, Zhi M, Hong Z (2022) Promoting the energy storage capability via selenium-enriched nickel bismuth selenide/graphite composites as the positive and negative electrodes. J Energy Storage 45:103716

    Google Scholar 

  59. Shinde NM, Xia QX, Yun JM, Singh S, Mane RS, Kim K-H (2017) A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Trans 46:6601–6611

    CAS  Google Scholar 

  60. Wang SX, Jin CC, Qian WJ (2014) Bi2O3 with activated carbon composite as a supercapacitor electrode. J Alloys Compd 15:12–17

    Google Scholar 

Download references

Acknowledgements

We fully appreciate the financial supports from the National Key Research and Development Program (Grant No. 2016YFB0901600), Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19E020014), and the National Natural Science Foundation of China (NSFC, Grant No. 21303162 & Grant No. 11604295). The authors also acknowledge the financial support of the Academy of Scientific Research and Technology, Egypt (Grant No. 6568).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diab Khalafallah, Mingjia Zhi or Zhanglian Hong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2409 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F.B.M., Khalafallah, D., Zhi, M. et al. Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes. Adv Compos Hybrid Mater 5, 2500–2514 (2022). https://doi.org/10.1007/s42114-022-00496-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00496-1

Keywords

Navigation