Skip to main content
Log in

A Fractional Approach to Non-Newtonian Blood Rheology in Capillary Vessels

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

In small arterial vessels, fluid mechanics involving linear viscous fluid does not reproduce experimental results that correspond to non-parabolic profiles of velocity across the vessel diameter. In this paper, an alternative approach is pursued introducing long-range interactions that describe the interactions of non-adjacent fluid volume elements due to the presence of red blood cells and other dispersed cells in plasma. These non-local forces are defined as linearly dependent on the product of the volumes of the considered elements and on their relative velocity. Moreover, as the distance between two volume elements increases, the non-local forces decay with a material distance-decaying function. Assuming that decaying function belongs to a power-law functional class of real order, a fractional operator of the relative velocity appears in the resulting governing equation. It is shown that the mesoscale approach involving Hagen-Poiseuille law is able to reproduce experimentally measured profiles of velocity with a great accuracy. Additionally as the dimension of the vessel increases, non-local forces become negligible and the proposed model reverts to the classical Hagen-Poiseuille model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fung YC (1999) Biomechanics - circulation. Springer, New York

    Google Scholar 

  2. Venkatesan J, Sankar DS, Hemalatha K, Yatim Y (2013) Mathematical analysis of casson fluid model for blood rheology in stenosed narrow arteries. J Appl Math 2013:1–13

    Article  MATH  Google Scholar 

  3. Tangelder GJ, Slaaf DW, Muijtjens AMM, Arts T, Egbrink MGA, Reneman RS (1986) Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery. Circ Res 59(5):505–514

    Article  Google Scholar 

  4. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  5. Lu X, Bardet JP, Huang M (2009) Numerical solutions of strain localization with nonlocal softening plasticity. Comput Methods Appl Mech Eng 198:3702–3711

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebrahimi F, Barati MR, Dabbagh A (2016) A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182

    Article  MATH  Google Scholar 

  7. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  MATH  Google Scholar 

  8. Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435

    Article  MATH  Google Scholar 

  9. Koutsoumaris CC, Eptaimeros KG, Tsamasphyros GJ (2017) A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int J Solids Struct 112:222–238

    Article  Google Scholar 

  10. Tordesillas A, Peters JF, Gardiner BS (2004) Shear band evolution and accumulated microstructural development in Cosserat media. Int J Numer Anal Methods Geomech 28:981–1010

    Article  MATH  Google Scholar 

  11. Bordignon N, Piccolroaz A, Dal Corso F, Bigoni D (2015) Strain localization and shear banding in ductile materials. Front Mater 2:1–13

    Article  Google Scholar 

  12. El-Nabulsi RA (2017) Dynamics of pulsatile flows through microtubes from nonlocality. Mech Res Commun 86:18–26

    Article  Google Scholar 

  13. Owens RG (2006) A new microstructure-based constitutive model for human blood. J Non-Newtonian Fluid Mech 140:57–70

    Article  MATH  Google Scholar 

  14. Fang J, Owens RG (2006) Numerical simulations of pulsatile blood flow using a new constitutive model. Biorheology 43(5):637–660

    Google Scholar 

  15. Drapaca CS (2018) Poiseuille flow of a non-local non-newtonian fluid with wall slip: a first step in modeling cerebral microaneurysms. Fractal and fractional 2(9):1–20

    Google Scholar 

  16. Van P, Fulop T (2006) Weakly non-local fluid mechanics: Schrodinger equation. In: Proceedings of the Royal Society A, 462

  17. Todd BD, Hansen JS (2008) Nonlocal viscous transport and the effect on fluid stress. Phys Rev E 78:051202

    Article  Google Scholar 

  18. Di Paola M, Failla G, Zingales M (2009) Physically-based approach to the mechanics of strong non-local linear elasticity theory. J Elast 97(2):103–130

    Article  MathSciNet  MATH  Google Scholar 

  19. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Paola M, Failla G, Pirrotta A, Sofi A, Zingales M (2013) The mechanically based non-local elasticity: a overview of main results and future challenges. Philos Trans R Soc A Math Phys Eng Sci 371(1993):20120433

    Article  MathSciNet  MATH  Google Scholar 

  21. Alotta G, Failla G, Zingales M (2014) Finite element method for a non-local Timoshenko beam model. Finite Elem Anal Des 89:77–92

    Article  Google Scholar 

  22. Alotta G, Failla G, Zingales M (2017) Finite element formulation of a non-local hereditary fractional order Timoshenko beam. J Eng Mech - ASCE 143(5):D4015001

    Article  Google Scholar 

  23. Alotta G, Failla G, Pinnola FP (2017) Stochastic analysis of a non-local fractional viscoelastic bar forced by Gaussian white noise. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 3(3):030904. https://doi.org/10.1115/1.4036702

    Article  Google Scholar 

  24. Alotta G, Di Paola M, Failla G, Pinnola FP (2018) On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Composites Part B 137:102–110

    Article  Google Scholar 

  25. Podlubny I (1999) Fractional differential equation. Academic Press, San Diego

    MATH  Google Scholar 

  26. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integral and derivatives. Gordon&Breach Science Publisher, Amsterdam

    MATH  Google Scholar 

  27. Perrot A, Challamel N, Picandet V (2014) Poiseuille flow of nonlocal microstructured fluid. Mech Res Commun 59:51– 57

    Article  Google Scholar 

  28. Aifantis EC (2003) Update on a class of gradient theories. Mech Mater 35:259–280

    Article  Google Scholar 

  29. Li L, Hu Y (2016) Wave propagation in fluid conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Comput Mater Sci 112:282–288

    Article  Google Scholar 

  30. Di Paola M, Zingales M (2011) Fractional differential calculus for 3D mechanically based non-local elasticity. Int J Multiscale Comput Eng 9(5):579–597

    Article  Google Scholar 

  31. MATLAB (2018a) . The MathWorks, Inc., Natick

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Alotta.

Appendix:: Recalls on fractional calculus

Appendix:: Recalls on fractional calculus

In this section, a brief introduction to the fundamentals of fractional calculus will be given.

Consider the function f(x), \(x\in \mathbb {R}\), the left the right Riemann-Liouville (RL) fractional integral are defined as [25]:

$$ \left( I_{+}^{\alpha} f\right)(x)=\frac{1}{{\Gamma}(\alpha)}{\int}_{-\infty}^{x} \frac{f(\xi)}{(x-\xi)^{1-\alpha}}d\xi $$
(23a)
$$ \left( I_{-}^{\alpha} f\right)(x)=\frac{1}{{\Gamma}(\alpha)}{\int}_{x}^{\infty} \frac{f(\xi)}{(\xi-x)^{1-\alpha}}d\xi $$
(23b)

while the RL fractional derivative are defined as

$$ \left( D_{+}^{\alpha} f\right)(x)=\frac{1}{{\Gamma}(1-\alpha)}\frac{d}{dx}{\int}_{-\infty}^{x} \frac{f(\xi)}{(x-\xi)^{\alpha}}d\xi $$
(24a)
$$ \left( D_{-}^{\alpha} f\right)(x)=-\frac{1}{{\Gamma}(1-\alpha)}\frac{d}{dx}{\int}_{x}^{\infty} \frac{f(\xi)}{(\xi-x)^{\alpha}}d\xi $$
(24b)

where \(\alpha \in \mathbb {R}\), 0 ≤ α ≤ 1 and Γ(⋅) is the Euler gamma function. If f(x) is a continuous function with continuous first derivative, the left and right RL fractional derivatives are coincident with the Marchaud fractional derivatives, that may be written as follows:

$$ \left( \textbf{D}_{+}^{\alpha} f\right)(x)=\frac{\alpha}{{\Gamma}(1-\alpha)}{\int}_{-\infty}^{x} \frac{f(x)-f(\xi)}{(x-\xi)^{\alpha}}d\xi $$
(25a)
$$ \left( \textbf{D}_{-}^{\alpha} f\right)(x)=\frac{\alpha}{{\Gamma}(1-\alpha)}{\int}_{x}^{\infty} \frac{f(x)-f(\xi)}{(\xi-x)^{\alpha}}d\xi $$
(25b)

The Marchaud fractional derivatives may be defined also for a bounded domain 0 ≤ xL as

$$ \begin{array}{@{}rcl@{}} \left( \textbf{D}_{0^{+}}^{\alpha} f\right)(x)\!&=&\!\frac{\alpha}{{\Gamma}(1 - \alpha)}{{\int}_{0}^{x}} \frac{f(x) - f(\xi)}{(x - \xi)^{1+\alpha}}d\xi + \frac{f(x)}{{\Gamma}(1 - \alpha)x^{\alpha}} \end{array} $$
(26a)
$$ \begin{array}{@{}rcl@{}} \left( \textbf{D}_{L^{-}}^{\alpha} f\right)(x)\!&=&\!\frac{\alpha}{{\Gamma}(1 - \alpha)}{{\int}_{x}^{L}} \frac{f(x) - f(\xi)}{(\xi - x)^{1+\alpha}}d\xi + \frac{f(x)}{{\Gamma}(1 - \alpha)(L - x)^{\alpha}} \\ \end{array} $$
(26b)

The definitions of Marchaud fractional derivatives related to a single-variable scalar function may be extended to a multi-variable scalar function. The extension is more readable if referred to the Riesz fractional operators. Then it is necessary to introduce Riesz fractional integral \(\left (\bar {I}^{\alpha } f\right )(x)\) and derivative \(\left (\bar {D}^{\alpha } f\right )(x)\):

$$ \begin{array}{@{}rcl@{}} \left( \bar I^{\alpha} f\right)(x)&=&\!\nu(\alpha){\int}_{-\infty}^{\infty} \frac{f(\xi)}{|x-\xi|^{1-\alpha}}d\xi \\&=&\!\nu(\alpha)\left[\left( I_{+}^{\alpha} f\right)(x)+\left( I_{-}^{\alpha} f\right)(x)\right] \end{array} $$
(27a)
$$ \begin{array}{@{}rcl@{}} \left( \bar D^{\alpha} f\right)(x)&=&\!\nu(-\alpha){\int}_{-\infty}^{\infty} \frac{f(x-\xi)-f(x)}{|\xi|^{1+\alpha}}d\xi\\ &=&\!{\Gamma}(1 - \alpha)\nu(-\alpha)\left[\left( \textbf{D}_{+}^{\alpha} f\right)(x) + \left( \textbf{D}_{-}^{\alpha} f\right)(x)\right] \\ \end{array} $$
(27b)

where να) = [2 cos(απ/2)Γ(±α)]− 1. The Riesz fractional operator may be generalized to multivariate scalar function f(x), with \(\textbf {x}\in \mathbb {R}^{n}\):

$$ \begin{array}{@{}rcl@{}} \left( \bar D^{\alpha} f\right)(\textbf{x})&=&\frac{1}{d_{n,\bar l}(\bar\alpha)}{\int}_{\mathbb{R}^{n}} \frac{f({\boldsymbol \xi})-f(\textbf{x})}{||{\boldsymbol \xi}-\textbf{x}||^{n+\alpha}}d{\boldsymbol \xi}\\&=& \frac{\chi(\bar\alpha)}{d_{n,\bar l}(\bar\alpha)}\left[\left( \textbf{D}_{+}^{\alpha} f\right)(\textbf{x})+\left( \textbf{D}_{-}^{\alpha} f\right)({\boldsymbol x})\right] \end{array} $$
(28)

where

$$ d_{n,l}(\alpha)=\beta_{n}(\alpha)\frac{A_{l}(\alpha)}{\sin(\alpha\pi/2)} $$
(29a)
$$ \beta_{n}(\alpha)=\frac{\pi^{1+n/2}}{2^{\alpha} {\Gamma}(1+\alpha/2){\Gamma}(n+\alpha/2)} $$
(29b)
$$ A_{l}(\alpha)=\sum\limits_{k = 0}^{l}(-1)^{k-1}{l\choose k}k^{\alpha} $$
(29c)

and χ(α) = −Al(α)Γ(α), \(\bar \alpha =n-1+\alpha \), \(\bar l=n-1+l\), l = {α} + 1 and {α} is the integer part of α. The complete demonstration of Eq. 28 is omitted here for the sake of brevity; more information can be found in [26].

Finally, we briefly introduce the n-dimensional CMFD as

$$ \left( \textbf{D}_{-}^{\alpha} f\right)({\boldsymbol x})=\frac{\alpha}{{\Gamma}(1-\alpha)}{\int}_{\mathbb{R}^{n}} \frac{f({\boldsymbol x})-f({\boldsymbol \xi})}{({\boldsymbol \xi}-{\boldsymbol x})^{n+\alpha}}{\boldsymbol J}_{kj}d{\boldsymbol \xi} $$
(30)

where Jkj = ikij is a Jacoby directional tensor, being ik the unit vector associated with the direction xξ. In the specific problem treated in this paper, the governing equation written in polar coordinates and in axial-symmetric conditions is basically a scalar governing equation, then the Jacoby tensor reduce to unity; this is equivalent to say that the attenuation function, that is responsible for the appearance of fractional operator, reduces in this case to a scalar function. As a consequence, in the governing equation in Eq. 21, the integral term may be recognized as the integral part of the Marchaud fractional derivative defined in bounded domain and reported in Eq. 21. More details can be found in [30].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotta, G., Bologna, E., Failla, G. et al. A Fractional Approach to Non-Newtonian Blood Rheology in Capillary Vessels. J Peridyn Nonlocal Model 1, 88–96 (2019). https://doi.org/10.1007/s42102-019-00007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-019-00007-9

Keywords

Navigation