Skip to main content
Log in

Progress in the imaging of COPD: quantitative and functional evaluation

  • Review
  • Published:
Chinese Journal of Academic Radiology Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease, which has caused serious social and economic burden. The main characteristic of COPD is the heterogeneity of disease, manifesting as emphysema, functional small airways disease (fSAD) and large airway diseases. Imaging plays an important role in the evaluation of COPD. In this article, we summarized the recent advances in the imaging of COPD, especially in the quantitative and functional evaluations of the disease. Imaging provides the detailed anatomical, quantitative and function information, illustrates regional heterogeneity and spatial distribution, as well as provides microstructural assessment on the alveolar level. Especially, air trapping index (ATI), parametric response mapping (PRM), gas exchange and texture analysis facilitate the early diagnosis, phenotype classification, severity and therapeutic effect evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med. 2017;195(5):557-582.

  2. Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018;391(10131):1706–17.

    Article  PubMed  Google Scholar 

  3. Pauls S, Gulkin D, Feuerlein S, et al. Assessment of COPD severity by computed tomography: correlation with lung functional testing. Clin Imaging. 2010;34:172–8.

    Article  PubMed  Google Scholar 

  4. Washko GR, Coxson HO, O’Donnell DE, et al. CT imaging of chronic obstructive pulmonary disease: insights, disappointments, and promise. Lancet Respir Med. 2017;5(11):903–8.

    Article  PubMed  Google Scholar 

  5. Fan L, Xia Y, Guan Y, et al. Characteristic features of pulmonary function test, CT volume analysis and MR perfusion imaging in COPD patients with different HRCT phenotypes. Clin Respir J. 2014;8(1):45–54.

    Article  PubMed  Google Scholar 

  6. Kim EY, Seo JB, Lee HJ, et al. Detailed analysis of the density change on chest CT of COPD using non-rigid registration of inspiration/expiration CT scans. Eur Radiol. 2015;25(2):541–9.

    Article  PubMed  Google Scholar 

  7. Marsh S, Aldington S, Williams MV, et al. Utility of lung density measurements in the diagnosis of emphysema. Respir Med. 2007;101:1512–20.

    Article  PubMed  Google Scholar 

  8. Gevenois PA, Scillia P, de Maertelaer V, et al. The effects of age, sex, lung size, and hyperinflation on CT lung densitometry. Am J Roentgenol. 1996;167:1169–73.

    Article  CAS  Google Scholar 

  9. Irion KL, Marchiori E, Hochhegger B, et al. CT quantification of emphysema in young subjects with no recognizable chest disease. Am J Roentgenol. 2009;192:W90–6.

    Article  Google Scholar 

  10. Zach JA, Newell JD Jr, Schroeder J, et al. Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults. Invest Radiol. 2012;47:596–602.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park KJ, Bergin CJ, Clausen JL. Quantitation of emphysema with three-dimensional CT densitometry: comparison with two-dimensional analysis, visual emphysema scores, and pulmonary function test results. Radiology. 1999;211:541–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lynch DA, Austin JH, Hogg JC, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner society. Radiology. 2015;277:192–205.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xia Y, Guan Y, Fan L, et al. Dynamic contrast enhanced magnetic resonance perfusion imaging in high-risk smokers and smoking-related COPD: correlations with pulmonary function tests and quantitative computed tomography. COPD. 2014;11(5):510–20.

    Article  PubMed  Google Scholar 

  14. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246:697–722.

    Article  PubMed  Google Scholar 

  15. Lee SM, Seo JB, Lee SM, et al. Optimal threshold of subtraction method for quantification of air-trapping on coregistered CT in COPD patients. Eur Radiol. 2016;26(7):2184–92.

    Article  PubMed  Google Scholar 

  16. Hersh CP, Washko GR, Estépar RS, et al. Paired inspiratory -expiratory chest CT scans to assess for small airways disease in COPD. Respir Res. 2013;14:42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Busacker A, Newell JD Jr, Keefe T, et al. A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. Chest. 2009;135(1):48–56.

    Article  PubMed  Google Scholar 

  18. Boes JL, Hoff BA, Bule M, et al. Parametric response mapping monitors temporal changes on lung CT scans in the subpopulations and intermediate outcome measures in COPD Study (SPIROMICS). Acad Radiol. 2015;22(2):186–94.

    Article  PubMed  Google Scholar 

  19. Hoff BA, Pompe E, Galbán S, et al. CT-Based Local Distribution Metric Improves Characterization of COPD. Sci Rep. 2017;7(1):2999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ley-Zaporozhan J, Ley S, Mews J, et al. Changes of Emphysema Parameters over the Respiratory Cycle During Free Breathing: preliminary Results Using Respiratory Gated 4D-CT. COPD. 2017;14(6):597–602.

    Article  PubMed  Google Scholar 

  21. Guan Y, Fan L, Xia Y, et al. CT quantitative analysis of small airway remodeling and lobe-based emphysema of chronic obstructive pulmonary disease and its correlation with pulmonary function test. Chin J Med Imaging Technol. 2015;31(2):181–4 (In Chinese).

    CAS  Google Scholar 

  22. Oguma T, Hirai T, Fukui M, et al. Longitudinal shape irregularity of airway lumen assessed by CT in patients with bronchial asthma and COPD. Thorax. 2015;70(8):719

  23. Kirby M, Tanabe N, Tan WC, et al. Total Airway Count on Computed Tomography and the Risk of Chronic Obstructive Pulmonary Disease Progression. Findings from a Population-based Study. Am J Respir Crit Care Med. 2018;197(1):56-65.

  24. Matsuoka S, Washko GR, Dransfield MT, et al. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol. 2010;17(1):93–9.

    Article  PubMed  Google Scholar 

  25. Takayanagi S, Kawata N, Tada Y, et al. Longitudinal changes in structural abnormalities using MDCT in COPD: do the CT measurements of airway wall thickness and small pulmonary vessels change in parallel with emphysematous progression? Int J Chron Obstruct Pulmon Dis. 2017;12:551–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coste F, Dournes G, Dromer C, et al. CT evaluation of small pulmonary vessels area in patients with COPD with severe pulmonary hypertension. Thorax. 2016;71(9):830–7.

    Article  PubMed  Google Scholar 

  27. Fan L, Xia Y, Guan Y, et al. Capability of differentiating smokers with normal pulmonary function from COPD patients: a comparison of CT pulmonary volume analysis and MR perfusion imaging. Eur Radiol. 2013;23(5):1234–41.

    Article  PubMed  Google Scholar 

  28. Guan Y, Xia Y, Fan L, et al. Quantitative assessment of pulmonary perfusion using dynamic contrast-enhanced CT in patients with chronic obstructive pulmonary disease: correlations with pulmonary function test and CT volumetric parameters. Acta Radiol. 2015;56(5):573–80.

    Article  PubMed  Google Scholar 

  29. Li H, Zhang Z, Zhao X, et al. Quantitative evaluation of radiation-induced lung injury with hyperpolarized xenon magnetic resonance. Magn Reson Med. 2016;76(2):408–16.

    Article  CAS  PubMed  Google Scholar 

  30. Norquay G, Leung G, Stewart NJ, et al. 129 Xe chemical shift in human blood and pulmonary blood oxygenation measurement in humans using hyperpolarized 129 Xe NMR. Magn Reson Med. 2017;77(4):1399–408.

    Article  CAS  PubMed  Google Scholar 

  31. Horn FC, Rao M, Stewart NJ, et al. Multiple breath washout of hyperpolarized 129 Xe and 3He in human lungs with three-dimensional balanced steady-state free-precession imaging. Magn Reson Med. 2017;77(6):2288–95.

    Article  CAS  PubMed  Google Scholar 

  32. Couch MJ, Ball IK, Li T, et al. 19 F MRI of the Lungs Using Inert Fluorinated Gases: Challenges and New Developments. J Magn Reson Imaging. 2018 Sep 24 https://doi.org/10.1002/jmri.26292. [Epub ahead of print].

  33. Fuseya Y, Muro S, Sato S, et al. Complementary regional heterogeneity information from COPD patients obtained using oxygen-enhanced MRI and chest CT. PLoS One. 2018;13(8):e0203273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matin TN, Rahman N, Nickol AH, et al. Chronic obstructive pulmonary disease: lobar analysis with hyperpolarized 129Xe MR Imaging. Radiology. 2017;282(3):857–68.

    Article  PubMed  Google Scholar 

  35. Capaldi DPI, Zha N, Guo F, et al. Pulmonary imaging biomarkers of gas trapping and emphysema in COPD: 3He MR imaging and CT parametric response maps. Radiology. 2016;279:597–608.

    Article  PubMed  Google Scholar 

  36. Sugino K, Kobayashi M, Nakamura Y, et al. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema. PLoS One. 2017;12(1):e0170289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee SM, Seo JB, Hwang HJ, et al. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients. Eur Radiol. 2017;27(7):2818–27.

    Article  PubMed  Google Scholar 

  38. Wang JM, Robertson SH, Wang Z, et al. Using hyperpolarized 129Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis. Thorax. 2018;73(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Angelini ED, Smith BM, et al. Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study. Med Comput Vis Bayesian Graph Models Biomed Imaging. 2016;2017(2017):69–80.

    Google Scholar 

  40. Lee M, Lee JG, Kim N, et al. Hybrid Airway Segmentation Using Multi-Scale Tubular Structure Filters and Texture Analysis on 3D Chest CT Scans. J Digit Imaging. 2018 Nov 21. https://doi.org/10.1007/s10278-018-0158-8.

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant numbers 81871321, 81370035]; the National Key R&D Program of China [Grant numbers 2016YFE0103000, 2017YFC1308703].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhaoBin Li or Shiyuan Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zhou, X., Xia, Y. et al. Progress in the imaging of COPD: quantitative and functional evaluation. Chin J Acad Radiol 1, 43–48 (2019). https://doi.org/10.1007/s42058-019-00007-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42058-019-00007-0

Keywords

Navigation