Skip to main content

Advertisement

Log in

Reversibility of disturbed pituitary function in pediatric conditions with psychological stressors: implications for clinical practice

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

The complex communication network between the central nervous system and the hypothalamic-pituitary axis forms the basis of endocrine functional plasticity, which facilitates adaptation to changing internal and external conditions, but also makes it vulnerable to the negative effects of stressful psychological factors. Herein, clinical conditions such as functional hypothalamic amenorrhea, eating disorders, growth faltering, post-traumatic stress disorder, and pubertal disorders that may emerge during childhood or adolescence, their origin possibly including psychological stressors, are analyzed regarding their genetic susceptibility and reversibility of endocrine function. A discussion on the optimization of therapeutic management defined by managing stress and maximizing the degree and rate of reversibility follows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lechan RM, Toni R et al Functional Anatomy of the Hypothalamus and Pituitary. In: [Feingold, Anawalt Kenneth R. and, Boyce Bradley and, (eds) Endotext. MDText.com, Inc., South Dartmouth (MA)

  2. Alatzoglou KS, Gregory LC, Dattani MT (2020) Comprehensive Physiology. Compr Physiol 10:389–413. https://doi.org/10.1002/cphy.c150043

    Article  PubMed  Google Scholar 

  3. Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of Pituitary Development: signaling and transcriptional networks. Physiol Rev 87:933–963. https://doi.org/10.1152/physrev.00006.2006

    Article  CAS  PubMed  Google Scholar 

  4. Santiago-Andres Y, Golan M, Fiordelisio T (2021) Functional pituitary networks in vertebrates. Front Endocrinol 11:619352. https://doi.org/10.3389/fendo.2020.619352

    Article  Google Scholar 

  5. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463. https://doi.org/10.1016/s0149-7634(00)00014-2

    Article  CAS  PubMed  Google Scholar 

  6. Piekarski DJ, Johnson CM, Boivin JR et al (2017) Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res 1654:123–144. https://doi.org/10.1016/j.brainres.2016.08.042

    Article  CAS  PubMed  Google Scholar 

  7. Hochberg Z, Belsky J (2013) Evo-Devo of human adolescence: beyond disease models of early puberty. Bmc Med 11:113. https://doi.org/10.1186/1741-7015-11-113

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krishnan V, Han M-H, Graham DL et al (2007) Molecular adaptations Underlying susceptibility and resistance to Social Defeat in Brain reward regions. Cell 131:391–404. https://doi.org/10.1016/j.cell.2007.09.018

    Article  CAS  PubMed  Google Scholar 

  9. Auxéméry Y (2012) L’état De stress post-traumatique comme conséquence de l’interaction entre une susceptibilité génétique individuelle, un évènement traumatogène et un contexte social. L’encéphale 38:373–380. https://doi.org/10.1016/j.encep.2011.12.003

    Article  PubMed  Google Scholar 

  10. McIlwrick S, Rechenberg A, Matthes M et al (2016) Genetic predisposition for high stress reactivity amplifies effects of early-life adversity. Psychoneuroendocrino 70:85–97. https://doi.org/10.1016/j.psyneuen.2016.04.023

    Article  Google Scholar 

  11. Reindollar RH, Novak M, Tho SP, McDonough PG (1986) Adult-onset amenorrhea: a study of 262 patients. Am J Obstet Gynecol 155:531–543. https://doi.org/10.1016/0002-9378(86)90274-7

    Article  CAS  PubMed  Google Scholar 

  12. Błażej M, Olga N, Christian B et al (2023) Neuroendocrine disturbances in women with functional hypothalamic amenorrhea: an update and future directions. https://doi.org/10.1007/s12020-023-03619-w. Endocrine 1–17

  13. Berga SL, Marcus MD, Loucks TL et al (2003) Recovery of ovarian activity in women with functional hypothalamic amenorrhea who were treated with cognitive behavior therapy. Fertil Steril 80:976–981. https://doi.org/10.1016/s0015-0282(03)01124-5

    Article  PubMed  Google Scholar 

  14. Bonazza F, Politi G, Leone D et al (2023) Psychological factors in functional hypothalamic amenorrhea: a systematic review and meta-analysis. Front Endocrinol 14:981491. https://doi.org/10.3389/fendo.2023.981491

    Article  Google Scholar 

  15. Loucks AB, Thuma JR (2003) Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab 88:297–311. https://doi.org/10.1210/jc.2002-020369

    Article  CAS  PubMed  Google Scholar 

  16. Gordon CM, Ackerman KE, Berga SL et al (2017) Functional hypothalamic amenorrhea: an endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metabolism 102:1413–1439. https://doi.org/10.1210/jc.2017-00131

    Article  Google Scholar 

  17. Pape J, Herbison AE, Leeners B (2020) Recovery of menses after functional hypothalamic amenorrhoea: if, when and why. Hum Reprod Updat 27:130–153. https://doi.org/10.1093/humupd/dmaa032

    Article  CAS  Google Scholar 

  18. Tranoulis A, Soldatou A, Georgiou D et al (2020) Adolescents and young women with functional hypothalamic amenorrhoea: is it time to move beyond the hormonal profile? Arch Gynecol Obstet 301:1095–1101. https://doi.org/10.1007/s00404-020-05499-1

    Article  PubMed  Google Scholar 

  19. Strock NCA, Souza MJD, Williams NI (2020) Eating behaviours related to psychological stress are associated with functional hypothalamic amenorrhoea in exercising women. J Sports Sci 38:2396–2406. https://doi.org/10.1080/02640414.2020.1786297

    Article  PubMed  Google Scholar 

  20. Biller BM, Federoff HJ, Koenig JI, Klibanski A (1990) Abnormal cortisol secretion and responses to corticotropin-releasing hormone in women with hypothalamic amenorrhea. J Clin Endocrinol Metab 70:311–317. https://doi.org/10.1210/jcem-70-2-311

    Article  CAS  PubMed  Google Scholar 

  21. Berga SL, Loucks TL (2006) Use of cognitive behavior therapy for functional hypothalamic amenorrhea. Ann N Y Acad Sci 1092:114–129. https://doi.org/10.1196/annals.1365.010

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Pruneti C, Guidotti S (2022) Cognition, behavior, sexuality, and autonomic responses of women with hypothalamic amenorrhea. Brain Sci 12:1448. https://doi.org/10.3390/brainsci12111448

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vescovi JD, Jamal SA, Souza MJD (2008) Strategies to reverse bone loss in women with functional hypothalamic amenorrhea: a systematic review of the literature. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation. USA 19:465–478. https://doi.org/10.1007/s00198-007-0518-6

    Article  CAS  Google Scholar 

  24. O’Donnell E, Goodman JM, Harvey PJ (2011) Clinical review: Cardiovascular consequences of ovarian disruption: a focus on functional hypothalamic amenorrhea in physically active women. J Clin Endocrinol Metab 96:3638–3648. https://doi.org/10.1210/jc.2011-1223

    Article  CAS  PubMed  Google Scholar 

  25. Caronia LM, Martin C, Welt CK et al (2011) A genetic basis for functional hypothalamic amenorrhea. New Engl J Med 364:215–225. https://doi.org/10.1056/nejmoa0911064

    Article  CAS  PubMed  Google Scholar 

  26. Michopoulos V, Mancini F, Loucks TL, Berga SL (2013) Neuroendocrine recovery initiated by cognitive behavioral therapy in women with functional hypothalamic amenorrhea: a randomized, controlled trial. Fertil Steril 99:2084–2091e1. https://doi.org/10.1016/j.fertnstert.2013.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tschugguel W, Berga SL (2003) Treatment of functional hypothalamic amenorrhea with hypnotherapy. Fertil Steril 80:982–985. https://doi.org/10.1016/s0015-0282(03)01012-4

    Article  PubMed  Google Scholar 

  28. Goyal M, Singh S, Sibinga EMS et al (2014) Meditation Programs for Psychological Stress and Well-being: a systematic review and Meta-analysis. JAMA Intern Med 174:357–368. https://doi.org/10.1001/jamainternmed.2013.13018

    Article  PubMed  PubMed Central  Google Scholar 

  29. Treasure J, Zipfel S, Micali N et al (2015) Anorexia nervosa. Nat Reviews Disease Primers 1:15074. https://doi.org/10.1038/nrdp.2015.74

    Article  PubMed  Google Scholar 

  30. Zipfel S, Löwe B, Reas DL et al (2000) Long-term prognosis in anorexia nervosa: lessons from a 21-year follow-up study. Lancet (London England) 355:721–722. https://doi.org/10.1016/s0140-6736(99)05363-5

    Article  CAS  PubMed  Google Scholar 

  31. Keeler JL, Robinson L, Keeler-Schäffeler R et al (2022) Growth factors in anorexia nervosa: a systematic review and meta-analysis of cross-sectional and longitudinal data. World J Biol Psychiatry: Official J World Federation Soc Biol Psychiatry 1–19. https://doi.org/10.1080/15622975.2021.2015432

  32. Ackerman KE, Slusarz K, Guereca G et al (2012) Higher ghrelin and lower leptin secretion are associated with lower LH secretion in young amenorrheic athletes compared with eumenorrheic athletes and controls. Am J Physiol-endoc M 302:E800–E806. https://doi.org/10.1152/ajpendo.00598.2011

    Article  CAS  Google Scholar 

  33. Legroux I, Cortet B (2019) Factors influencing bone loss in anorexia nervosa: assessment and therapeutic options. RMD open 5:e001009. https://doi.org/10.1136/rmdopen-2019-001009

    Article  PubMed  PubMed Central  Google Scholar 

  34. Warren MP (2011) Endocrine manifestations of eating disorders. J Clin Endocrinol Metabolism 96:333–343. https://doi.org/10.1210/jc.2009-2304

    Article  CAS  Google Scholar 

  35. Botticelli L, Bonaventura EMD, Bello FD et al (2020) Underlying susceptibility to eating disorders and drug abuse: genetic and pharmacological aspects of dopamine D4 receptors. Nutrients 12:2288. https://doi.org/10.3390/nu12082288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gervasini G, Gordillo I, García-Herráiz A et al (2013) Influence of dopamine polymorphisms on the risk for Anorexia Nervosa and Associated Psychopathological features. J Clin Psychopharm 33:551–555. https://doi.org/10.1097/jcp.0b013e3182970469

    Article  CAS  Google Scholar 

  37. Wentz E, Gillberg IC, Anckarsäter H et al (2009) Adolescent-onset anorexia nervosa: 18-year outcome. Br J Psychiatry: J Mental Sci 194:168–174. https://doi.org/10.1192/bjp.bp.107.048686

    Article  Google Scholar 

  38. Bomba M, Corbetta F, Bonini L et al (2014) Psychopathological traits of adolescents with functional hypothalamic amenorrhea: a comparison with anorexia nervosa. Eat Weight Disord - Stud Anorex Bulim Obes 19:41–48. https://doi.org/10.1007/s40519-013-0056-5

    Article  Google Scholar 

  39. Strokosch GR, Friedman AJ, Wu S-C, Kamin M (2006) Effects of an oral contraceptive (norgestimate/ethinyl estradiol) on bone mineral density in adolescent females with anorexia nervosa: a double-blind, placebo-controlled study. J Adolesc Health: Official Publication Soc Adolesc Med 39:819–827. https://doi.org/10.1016/j.jadohealth.2006.09.010

    Article  Google Scholar 

  40. Nickel K, Joos A, van Elst LT et al (2018) Recovery of cortical volume and thickness after remission from acute anorexia nervosa. Int J Eat Disord 51:1056–1069. https://doi.org/10.1002/eat.22918

    Article  PubMed  Google Scholar 

  41. Neale J, Pais SMA, Nicholls D et al (2020) What are the effects of Restrictive Eating disorders on Growth and Puberty and are effects Permanent? A systematic review and Meta-analysis. J Adolesc Health: Official Publication Soc Adolesc Med 66:144–156. https://doi.org/10.1016/j.jadohealth.2019.08.032

    Article  Google Scholar 

  42. Chaer R, Nakouzi N, Itani L et al (2020) Fertility and Reproduction after Recovery from Anorexia Nervosa: a systematic review and Meta-analysis of Long-Term Follow-Up studies. Dis (Basel Switzerland) 8:E46. https://doi.org/10.3390/diseases8040046

    Article  Google Scholar 

  43. Fairburn CG, Cooper Z, Doll HA et al (2009) Transdiagnostic cognitive-behavioral therapy for patients with eating disorders: a two-site Trial with 60-Week Follow-Up. Am J Psychiat 166:311–319. https://doi.org/10.1176/appi.ajp.2008.08040608

    Article  PubMed  Google Scholar 

  44. Linardon J, Tylka TL, Fuller-Tyszkiewicz M (2021) Intuitive eating and its psychological correlates: a meta‐analysis. Int J Eat Disord 54:1073–1098. https://doi.org/10.1002/eat.23509

    Article  PubMed  Google Scholar 

  45. Hazzard VM, Telke SE, Simone M et al (2021) Intuitive eating longitudinally predicts better psychological health and lower use of disordered eating behaviors: findings from EAT 2010–2018. Eat Weight Disord - Stud Anorex. Bulim Obes 26:287–294. https://doi.org/10.1007/s40519-020-00852-4

    Article  Google Scholar 

  46. Katterman SN, Kleinman BM, Hood MM et al (2014) Mindfulness meditation as an intervention for binge eating, emotional eating, and weight loss: a systematic review. Eat Behav 15:197–204. https://doi.org/10.1016/j.eatbeh.2014.01.005

    Article  PubMed  Google Scholar 

  47. Mei Z, Grummer-Strawn LM, Thompson D, Dietz WH (2004) Shifts in percentiles of growth during early childhood: analysis of longitudinal data from the California Child Health and Development Study. Pediatrics 113:e617–627. https://doi.org/10.1542/peds.113.6.e617

    Article  PubMed  Google Scholar 

  48. Black RE, Victora CG, Walker SP et al (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet (London England) 382:427–451. https://doi.org/10.1016/s0140-6736(13)60937-x

    Article  PubMed  Google Scholar 

  49. Sills RH (1978) Failure to thrive. The role of clinical and laboratory evaluation. Am J Dis Child (1960) 132:967–969. https://doi.org/10.1001/archpedi.1978.02120350031003

  50. Skuse D, Albanese A, Stanhope R et al (1996) A new stress-related syndrome of growth failure and hyperphagia in children, associated with reversibility of growth-hormone insufficiency. Lancet (London England) 348:353–358. https://doi.org/10.1016/s0140-6736(96)01358-x

    Article  CAS  PubMed  Google Scholar 

  51. Gilmour J, Skuse D (1999) A case-comparison study of the characteristics of children with a short stature Syndrome Induced by stress (Hyperphagic Short stature) and a Consecutive Series of Unaffected stressed children. J Child Psychol Psychiatry Allied Disciplines 40:969–978. https://doi.org/10.1111/1469-7610.00514

    Article  CAS  Google Scholar 

  52. Powell GF, Brasel JA, Blizzard RM (1967) Emotional deprivation and growth retardation simulating idiopathic hypopituitarism. I. Clinical evaluation of the syndrome. N Engl J Med 276:1271–1278. https://doi.org/10.1056/nejm196706082762301

    Article  CAS  PubMed  Google Scholar 

  53. Albanese A, Hamill G, Jones J et al (1994) Reversibility of physiological growth hormone secretion in children with psychosocial dwarfism. Clin Endocrinol 40:687–692. https://doi.org/10.1111/j.1365-2265.1994.tb03022.x

    Article  CAS  Google Scholar 

  54. Gohlke BC, Frazer FL, Stanhope R (2004) Growth hormone secretion and long-term Growth Data in Children with Psychosocial Short stature treated by different changes in Environment. J Pediatr Endocrinol Metab 17:637–644. https://doi.org/10.1515/jpem.2004.17.4.637

    Article  CAS  PubMed  Google Scholar 

  55. Gohlke B, Stanhope R (2002) Final height in psychosocial short stature: is there complete catch-up? Acta Pædiatrica 91:961–965. https://doi.org/10.1111/j.1651-2227.2002.tb02885.x

    Article  CAS  PubMed  Google Scholar 

  56. Greca AML, Taylor CJ, Herge WM (2012) The Oxford Handbook of Traumatic Stress Disorders. In: [Beck, Sloan J. Gayle and, M.] Denise (eds) The Oxford Handbook of Traumatic Stress Disorders. Oxford University Press, pp 97–118

  57. Martin EI, Ressler KJ, Binder E, Nemeroff CB (2009) The neurobiology of anxiety disorders: Brain Imaging, Genetics, and psychoneuroendocrinology. Psychiatr Clin North Am 32:549–575. https://doi.org/10.1016/j.psc.2009.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Skelton K, Weiss T, Bradley B (2009) The Impact of Early Life Trauma on Health and Disease. 148–156. https://doi.org/10.1017/cbo9780511777042.018

  59. Syed SA, Nemeroff CB (2017) Early life stress, Mood, and anxiety disorders. Chronic Stress 1:2470547017694461. https://doi.org/10.1177/2470547017694461

    Article  PubMed  PubMed Central  Google Scholar 

  60. Heim C, Newport DJ, Mletzko T et al (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33:693–710. https://doi.org/10.1016/j.psyneuen.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  61. Gotlib IH, Joormann J, Minor KL, Hallmayer J (2008) HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol Psychiatry 63:847–851. https://doi.org/10.1016/j.biopsych.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  62. Binder EB, Bradley RG, Liu W et al (2008) Association of FKBP5 Polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA: J Am Med Association 299:1291–1305. https://doi.org/10.1001/jama.299.11.1291

    Article  CAS  Google Scholar 

  63. Mehta D, Gonik M, Klengel T et al (2011) Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch Gen Psychiatry 68:901–910. https://doi.org/10.1001/archgenpsychiatry.2011.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koenen KC, Amstadter AB, Nugent NR (2009) Gene-environment interaction in posttraumatic stress disorder: an update. J Trauma Stress 22:416–426. https://doi.org/10.1002/jts.20435

    Article  PubMed  PubMed Central  Google Scholar 

  65. Greca AML, Silverman WK, Lai B, Jaccard J (2010) Hurricane-Related exposure experiences and stressors, other Life events, and Social Support: concurrent and prospective impact on children’s persistent posttraumatic stress symptoms. J Consult Clin Psych 78:794–805. https://doi.org/10.1037/a0020775

    Article  Google Scholar 

  66. Green BL, Grace MC, Vary MG et al (1994) Children of disaster in the second decade: a 17-Year follow-up of Buffalo Creek survivors. J Am Acad Child Adolesc Psychiatry 33:71–79. https://doi.org/10.1097/00004583-199401000-00011

    Article  CAS  PubMed  Google Scholar 

  67. Teilmann G, Pedersen CB, Skakkebaek NE, Jensen TK (2006) Increased risk of precocious puberty in internationally adopted children in Denmark. Pediatrics 118:e391–399. https://doi.org/10.1542/peds.2005-2939

    Article  PubMed  Google Scholar 

  68. DePasquale CE, Donzella B, Gunnar MR (2019) Pubertal recalibration of cortisol reactivity following early life stress: a cross-sectional analysis. J Child Psychol Psychiatry Allied Discip 60:566–575. https://doi.org/10.1111/jcpp.12992

    Article  Google Scholar 

  69. Mancini A, Magnotto JC, Abreu AP (2022) Genetics of pubertal timing. Best Pract Res Cl En 36:101618. https://doi.org/10.1016/j.beem.2022.101618

    Article  CAS  Google Scholar 

  70. Abreu AP, Macedo DB, Brito VN et al (2015) A new pathway in the control of the initiation of puberty: the MKRN3 gene. J Mol Endocrinol 54:R131–R139. https://doi.org/10.1530/jme-14-0315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grandone A, Capristo C, Cirillo G et al (2017) Molecular screening of MKRN3, DLK1, and KCNK9 genes in girls with idiopathic central precocious puberty. Horm Res Paediat 88:194–200. https://doi.org/10.1159/000477441

    Article  CAS  Google Scholar 

  72. Canton APM, Tinano FR, Guasti L et al (2023) Rare variants in the MECP2 gene in girls with central precocious puberty: a translational cohort study. Lancet Diabetes Endocrinol 11:545–554. https://doi.org/10.1016/s2213-8587(23)00131-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dauber A, Cunha-Silva M, Macedo DB et al (2017) Paternally inherited DLK1 deletion Associated with Familial Central precocious puberty. J Clin Endocrinol Metabolism 102:1557–1567. https://doi.org/10.1210/jc.2016-3677

    Article  Google Scholar 

  74. Gurgel TM, BS DC, Nahime BV et al (2008) A GPR54-Activating mutation in a patient with central precocious puberty. New Engl J Med 358:709–715. https://doi.org/10.1056/nejmoa073443

    Article  Google Scholar 

  75. Silveira LG, Noel SD, Silveira-Neto AP et al (2010) Mutations of the KISS1 gene in disorders of Puberty. J Clin Endocrinol Metabolism 95:2276–2280. https://doi.org/10.1210/jc.2009-2421

    Article  CAS  Google Scholar 

  76. Recordati G, Bellini TG (2004) A definition of internal constancy and homeostasis in the context of non-equilibrium thermodynamics. Exp Physiol 89:27–38. https://doi.org/10.1113/expphysiol.2003.002633

    Article  CAS  PubMed  Google Scholar 

  77. Rogol AD (2020) Emotional deprivation in children: growth faltering and reversible hypopituitarism. Front Endocrinol 11. https://doi.org/10.3389/fendo.2020.596144

  78. Shufelt CL, Torbati T, Dutra E (2017) Hypothalamic amenorrhea and the Long-Term Health consequences. Semin Reprod Med 35:256–262. https://doi.org/10.1055/s-0037-1603581

    Article  PubMed  PubMed Central  Google Scholar 

  79. Singhal V, Misra M, Klibanski A (2014) Endocrinology of anorexia nervosa in young people: recent insights. Curr Opin Endocrinol Diabetes Obes 21:64–70. https://doi.org/10.1097/med.0000000000000026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Howland MA, Donzella B, Miller BS, Gunnar MR (2020) Pubertal recalibration of cortisol-DHEA coupling in previously-institutionalized children. Horm Behav 125:104816. https://doi.org/10.1016/j.yhbeh.2020.104816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weaver ICG, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. https://doi.org/10.1038/nn1276

    Article  CAS  PubMed  Google Scholar 

  82. Oberlander TF, Weinberg J, Papsdorf M et al (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106. https://doi.org/10.4161/epi.3.2.6034

    Article  PubMed  Google Scholar 

  83. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432. https://doi.org/10.1038/nature05918

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in Utero and early-life conditions on Adult Health and Disease. New Engl J Med 359:61–73. https://doi.org/10.1056/nejmra0708473

    Article  CAS  PubMed  Google Scholar 

  85. Morrison AE, Fleming S, Levy MJ A review of the pathophysiology of functional hypothalamic amenorrhoea in women subject to psychological stress, disordered eating, excessive exercise or a combination of these factors. Clinical Endocrinology n/a: https://doi.org/10.1111/cen.14399

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristeidis Giannakopoulos.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannakopoulos, A., Chrysis, D. Reversibility of disturbed pituitary function in pediatric conditions with psychological stressors: implications for clinical practice. Hormones (2024). https://doi.org/10.1007/s42000-024-00536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42000-024-00536-z

Keywords

Navigation