Skip to main content

Advertisement

Log in

Alpha-lipoic acid activates AMPK to protect against oxidative stress and apoptosis in rats with diabetic peripheral neuropathy

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose

To investigate the AMPK pathway–mediated effect of alpha-lipoic acid (ALA) on the dorsal root ganglia (DRGs) of rats with diabetic peripheral neuropathy (DPN) and to attempt to elucidate the underlying mechanism.

Methods

Sprague-Dawley rats (n = 15) were randomly divided into three groups. The control group was fed a standard diet, and the other groups were fed a high-carbohydrate/high-fat diet. Diabetes was established by a single streptozotocin (STZ) (30 mg/kg) injection, and control rats were injected with an equal volume of citrate buffer. ALA (60 mg/kg/day) was administered for 12 weeks. The nerve conduction velocity (NCV) of the sciatic nerve was measured. Glutathione (GSH) and malondialdehyde (MDA) concentrations in serum were measured with the thiobarbituric acid method and biochemistry. Pathological changes in the rat DRGs were observed. AMPK, phospho-AMPK (p-AMPK), nuclear factor erythroid-2-related factor 2 (Nrf2), phospho-nuclear factor erythroid-2-related factor 2 (p-Nrf2), heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), Forkhead box O3 (FoxO3a), phospho-Forkhead box O3 (p-FoxO3a), and Bcl-2 interacting mediator of cell death (Bim) expression levels were assessed by immunohistochemistry and western blotting.

Results

ALA improved the motor NCV (MNCV) and sensory NCV (SNCV) of rats with DPN and reduced their mechanical pain threshold. ALA increased serum GSH concentrations and decreased serum MDA concentrations. Additionally, AMPK was activated by ALA. Nrf2, p-Nrf2, HO-1, and NQO1 expression was upregulated, while FoxO3a, p-FoxO3a, and Bim expression was downregulated. ALA reduced oxidative stress and apoptosis in DRG.

Conclusion

ALA alleviates DPN and improves peripheral nerve function. ALA reduces oxidative stress by activating Nrf2 through AMPK and inhibits FoxO3a and Bim thereby reducing neuronal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK et al (2018) Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 833:472–523. https://doi.org/10.1016/j.ejphar.2018.06.034

    Article  CAS  PubMed  Google Scholar 

  2. Callaghan B, Gallagher G, Fridman V, Feldman E (2020) Diabetic neuropathy: what does the future hold? Diabetologia 63(5):891–897. https://doi.org/10.1007/s00125-020-05085-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernyhough P (2015) Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep 15(11):89–99. https://doi.org/10.1007/s11892-015-0671-9

    Article  CAS  PubMed  Google Scholar 

  4. Figueroa-Romero C, Sadidi M, Feldman EL (2008) Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 9(4):301–314. https://doi.org/10.1007/s11154-008-9104-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang RL et al (2014) The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 259:155–163. https://doi.org/10.1016/j.neuroscience.2013.11.057

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Huan Y, Li C, Cao H, Sun S, Lei L et al (2020) Diphenyl diselenide alleviates diabetic peripheral neuropathy in rats with streptozotocin-induced diabetes by modulating oxidative stress. Biochem Pharmacol 182:114221–114233. https://doi.org/10.1016/j.bcp.2020.114221

    Article  CAS  PubMed  Google Scholar 

  8. Chung YC, Lim JH, Oh HM, Kim HW, Kim MY, Kim EN et al (2018) Calcimimetic restores diabetic peripheral neuropathy by ameliorating apoptosis and improving autophagy. Cell Death Dis 9(12):1163. https://doi.org/10.1038/s41419-018-1192-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu J, Wang WN, Matei N, Li X, Pang JW, Mo J et al (2020) Ezetimibe attenuates oxidative stress and neuroinflammation via the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Oxid Med Cell Longev 2020:4717258. https://doi.org/10.1155/2020/4717258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Guo S, Yang F, Liu L, Chen Z (2021) Huayu Tongluo recipe attenuates renal oxidative stress and inflammation through the activation of AMPK/Nrf2 signaling pathway in streptozotocin- (STZ-) induced diabetic rats. Evid Based Complement Alternat Med 2021:5873007. https://doi.org/10.1155/2021/5873007

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kosuru R, Kandula V, Rai U, Prakash S, Xia Z, Singh S (2018) Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc Drugs Ther 32(2):147–163. https://doi.org/10.1007/s10557-018-6780-3

    Article  CAS  PubMed  Google Scholar 

  12. Li R, Liu Y, Shan YG, Gao L, Wang F, Qiu CG (2019) Bailcalin protects against diabetic cardiomyopathy through Keap1/Nrf2/AMPK-mediated antioxidative and lipid-lowering effects. Oxid Med Cell Longev 2019:3206542. https://doi.org/10.1155/2019/3206542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fasano C, Disciglio V, Bertora S, Lepore Signorile M, Simone C (2019) FOXO3a from the nucleus to the mitochondria: a round trip in cellular stress response. Cells 8(9):1110. https://doi.org/10.3390/cells8091110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Link W (2019) Introduction to FOXO biology. Methods Mol Biol 1890:1–9. https://doi.org/10.1007/978-1-4939-8900-31

    Article  CAS  PubMed  Google Scholar 

  15. Tóth F, Cseh E, Vécsei L (2021) Natural molecules and neuroprotection: kynurenic acid, pantethine and α-lipoic acid. Int J Mol Sci 22(1):403. https://doi.org/10.3390/ijms22010403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mozaffarian F, Dehghani M, Vanani A, Mahdavinia M (2022) Protective effects of alpha lipoic acid against arsenic induced oxidative stress in isolated rat liver mitochondria. Biol Trace Elem Res 200(3):1190–1200. https://doi.org/10.1007/s12011-021-02712-3

    Article  CAS  PubMed  Google Scholar 

  17. El Midaoui A, Fantus IG, Ait Boughrous A, Couture R (2019) Beneficial effects of alpha-lipoic acid on hypertension, visceral obesity, UCP-1 expression and oxidative stress in Zucker diabetic fatty ratS. Antioxidants (Basel) 8(12):648. https://doi.org/10.3390/antiox8120648

    Article  CAS  PubMed  Google Scholar 

  18. Ghibu S, Craciun CE, Rusu R, Morgovan C, Mogosan C, Rochette L et al (2019) Impact of alpha-lipoic acid chronic discontinuous treatment in cardiometabolic disorders and oxidative stress induced by fructose intake in rats. Antioxidants (Basel) 8(12):636. https://doi.org/10.3390/antiox8120636

    Article  CAS  PubMed  Google Scholar 

  19. Zarini-Gakiye E, Vaezi G, Parivar K, Sanadgol N (2021) Age and dose-dependent effects of alpha-lipoic acid on human microtubule- associated protein tau-induced endoplasmic reticulum unfolded protein response: implications for Alzheimer’s disease. CNS Neurol Disord Drug Targets 20(5):451–464. https://doi.org/10.2174/1871527320666210126114442

    Article  CAS  PubMed  Google Scholar 

  20. Tai S, Zheng Q, Zhai S, Cai T, Zhang C (2020) Alpha-lipoic acid mediates clearance of iron accumulation by regulating iron metabolism in a Parkinson’s disease model induced by 6-OHDA. Front Neurosci 14:612. https://doi.org/10.3389/fnins.2020.00612

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rahmanabadi A, Mahboob S, Amirkhizi F, Hosseinpour-Arjmand S, Ebrahimi-Mameghani M (2019) Oral α-lipoic acid supplementation in patients with non-alcoholic fatty liver disease: effects on adipokines and liver histology features. Food Funct 10(8):4941–4952. https://doi.org/10.1039/c9fo00449a

    Article  CAS  PubMed  Google Scholar 

  22. Derosa G, D'Angelo A, Romano D, Maffioli P (2016) A clinical trial about a food supplement containing α-lipoic acid on oxidative stress markers in type 2 diabetic patients. Int J Mol Sci 17(11):1802. https://doi.org/10.3390/ijms17111802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dos Santos SM, Romeiro CFR, Rodrigues CA, Cerqueira ARL, Monteiro MC (2019) Mitochondrial dysfunction and alpha-lipoic acid: beneficial or harmful in Alzheimer’s disease? Oxid Med Cell Longev 2019:8409329–8409329. https://doi.org/10.1155/2019/8409329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Pan Z, Fang Z, Lin W, Wu S, Yang F et al (2018) Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1. J Neuroinflammation 15(1):310. https://doi.org/10.1186/s12974-018-1345-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Won J, Kwon H, Moon S, Chun S, Kim C, Park I et al (2020) γ-linolenic acid versus α-lipoic acid for treating painful diabetic neuropathy in adults: a 12-week, double-placebo, randomized, noninferiority trial. Diabetes Metab J 44(4):542–554. https://doi.org/10.4093/dmj.2019.0099

    Article  PubMed  Google Scholar 

  26. Agathos E, Tentolouris A, Eleftheriadou I, Katsaouni P, Nemtzas I, Petrou A et al (2018) Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J Int Med Res 46(5):1779–1790. https://doi.org/10.1177/0300060518756540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wongmekiat O, Leelarungrayub D, Thamprasert K (2013) Alpha-lipoic acid attenuates renal injury in rats with obstructive nephropathy. Biomed Res Int 2013:138719. https://doi.org/10.1155/2013/138719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tesfaye S, Vileikyte L, Rayman G, Sindrup SH, Perkins BA, Baconja M et al (2011) Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab Res Rev 27(7):629–638. https://doi.org/10.1002/dmrr.1225

    Article  CAS  PubMed  Google Scholar 

  29. Biessels GJ, Bril V, Calcutt NA, Cameron NE, Cotter MA, Dobrowsky R et al (2014) Phenotyping animal models of diabetic neuropathy: a consensus statement of the diabetic neuropathy study group of the EASD (Neurodiab). J Peripher Nerv Syst 19(2):77–87. https://doi.org/10.1111/jns5.12072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ang L, Jaiswal M, Martin C, Pop-Busui R (2014) Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep 14(9):528. https://doi.org/10.1007/s11892-014-0528-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang CP, Lin CC, Li CI, Liu CS, Lin WY, Hwang KL et al (2015) Cardiovascular risk factors increase the risks of diabetic peripheral neuropathy in patients with type 2 diabetes mellitus: the Taiwan Diabetes Study. Medicine (Baltim) 94(42):e1783. https://doi.org/10.1097/MD.0000000000001783

    Article  CAS  Google Scholar 

  32. He J, Yuan G, Zhang J, Guo X (2019) Approach to creating early diabetic peripheral neuropathy rat model. Beijing Da Xue Xue Bao Yi Xue Ban 51(6):1150–1154. https://doi.org/10.19723/j.issn.1671-167X.2019.06.030

    Article  CAS  PubMed  Google Scholar 

  33. Jolivalt CG, Frizzi KE, Guernsey L, Marquez A, Ochoa J, Rodriguez M et al (2016) Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol 6(3):223–255. https://doi.org/10.1002/cpmo.11

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vazquez-Martin A, Corominas-Faja B, Cufi S, Vellon L, Oliveras-Ferraros C, Menendez O et al (2013) The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle 12(2):207–218. https://doi.org/10.4161/cc.23352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez C, Munoz M, Contreras C, Prieto D (2021) AMPK, metabolism, and vascular function. FEBS J 288(12):3746–3771. https://doi.org/10.1111/febs.15863

    Article  CAS  PubMed  Google Scholar 

  36. Shrikanth CB, Nandini CD (2020) AMPK in microvascular complications of diabetes and the beneficial effects of AMPK activators from plants. Phytomedicine 73:152808. https://doi.org/10.1016/j.phymed.2018.12.031

    Article  CAS  PubMed  Google Scholar 

  37. Fu B, Zhang J, Zhang X, Zhang C, Li Y, Zhang Y et al (2014) Alpha-lipoic acid upregulates SIRT1-dependent PGC-1α expression and protects mouse brain against focal ischemia. Neuroscience 281:251–257. https://doi.org/10.1016/j.neuroscience.2014.09.058

    Article  CAS  PubMed  Google Scholar 

  38. Holmström K, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land J et al (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2(8):761–770. https://doi.org/10.1242/bio.20134853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matzinger M, Fischhuber K, Poloske D, Mechtler K, Heiss EH (2020) AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biol 29:101393. https://doi.org/10.1016/j.redox.2019.101393

    Article  CAS  PubMed  Google Scholar 

  40. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao W, Zhang X, Chen Y, Shao Y, Feng Y (2020) Downregulation of TRIM8 protects neurons from oxygen-glucose deprivation/re-oxygenation-induced injury through reinforcement of the AMPK/Nrf2/ARE antioxidant signaling pathway. Brain Res 1728:146590. https://doi.org/10.1016/j.brainres.2019.146590

    Article  CAS  PubMed  Google Scholar 

  42. Psenakova K, Kohoutova K, Obsilova V, Ausserlechner M, Veverka V, Obsil T (2019) Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells 8(9):966. https://doi.org/10.3390/cells8090966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu M, Yuan C, He J, Tan T, Wu S, Fu H et al (2015) Resveratrol protects PC12 cells from high glucose-induced neurotoxicity via PI3K/Akt/FoxO3a pathway. Cell Mol Neurobiol 35(4):513–522. https://doi.org/10.1007/s10571-014-0147-5

    Article  CAS  PubMed  Google Scholar 

  44. Nasiry D, Khalatbary AR, Ahmadvand H, Talebpour Amiri F, Akbari E (2017) Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats. BMC Complement Altern Med 17(1):476. https://doi.org/10.1186/s12906-017-1983-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu Q, Zhai Y, Cheng Q, Liu Y, Gao X, Zhang T et al (2013) The Akt-FoxO3a-manganese superoxide dismutase pathway is involved in the regulation of oxidative stress in diabetic nephropathy. Exp Physiol 98(4):934–945. https://doi.org/10.1113/expphysiol.2012.068361

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation [grant numbers 81803922] funded by CHINA and Construction Program of new research and development platform and institution, Hebei Province Innovation Ability Promotion Plan (No. 20567624H).

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding author

Correspondence to Ying Ben.

Ethics declarations

Ethics approval and consent to participate

This project was approved by the Ethics Committee of Hebei University of Traditional Chinese Medicine (DWLL2018042).

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, D., Zhang, Z. et al. Alpha-lipoic acid activates AMPK to protect against oxidative stress and apoptosis in rats with diabetic peripheral neuropathy. Hormones 22, 95–105 (2023). https://doi.org/10.1007/s42000-022-00413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-022-00413-7

Keywords

Navigation