Skip to main content

Advertisement

Log in

Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Electrochemical water splitting is regarded as the most auspicious technology for renewable sources, transport, and storage of hydrogen energy. Currently, noble Pt metal and noble-metal oxides (IrO2 and RuO2) are recognized as state-of-the-art electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Searching for earth-abundant electrocatalysts for the HER and OER with remarkable performance and high stability to replace precious metals plays a significant role in the commercial application of electrochemical water splitting. In this review, recent advancements in nanostructured transition metal electrocatalysts are assessed through the selected examples of nitrides, carbides, phosphides, sulfides, borides, layered double hydroxides, and oxides. Recent breakthroughs in nanostructured transition metal electrocatalysts are discussed in terms of their mechanisms, controllable production, structural design, and innovative strategies for boosting their performance. For instance, most nanostructured transition metal electrocatalysts for overall water splitting (OWS) only function well in neutral and alkaline solutions. Finally, current research challenges and future perspectives for increasing the performance of nanostructured transition metals for OWS are proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [39]. Copyright 2017 American Chemical Society

Fig. 5
Fig. 6

Reproduced with permission from Ref. [50]. Copyright 2021 Elsevier Ltd.

Fig. 7

Reproduced with permission from Ref. [58]. Copyright 2018 Elsevier Ltd.

Fig. 8

Reproduced with permission from Ref. [61]. Copyright 2018 American Chemical Society

Fig. 9

Reproduced with permission from Ref. [71]. Copyright 2019 Elsevier

Fig. 10

Reproduced with permission from Ref. [74]. Copyright 2017 The Royal Society of Chemistry

Fig. 11

Reproduced with permission from Ref. [97]. Copyright 2018 The Royal Society of Chemistry

Fig. 12

Reproduced with permission from Ref. [103]. Copyrights 2020 Elsevier

Fig. 13

Reproduced with permission from Ref. [116]. Copyright 2017 WILEY-VCH

Fig. 14

Reproduced with permission from Ref. [119]. Copyright 2021 The Royal Society of Chemistry

Fig. 15

Reproduced with permission from Ref. [130]. Copyright 2017 WILEY-VCH

Fig. 16

Reproduced with permission from Ref. [141]. Copyright 2016 WILEY-VCH

Fig. 17

Reproduced with permission from Ref. [144]. Copyright 2017 WILEY-VCH

Similar content being viewed by others

References

  1. Tam, T.V., Kang, S.G., Kim, M.H., et al.: Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn−Air batteries and overall water splitting. Adv. Energy Mater. 9, 1900945 (2019). https://doi.org/10.1002/aenm.201900945

    Article  CAS  Google Scholar 

  2. Yu, L., Zhou, H.Q., Sun, J.Y., et al.: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017). https://doi.org/10.1039/c7ee01571b

    Article  CAS  Google Scholar 

  3. Zhou, W.J., Jia, J., Lu, J., et al.: Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016). https://doi.org/10.1016/j.nanoen.2016.08.027

    Article  CAS  Google Scholar 

  4. Yue, X., Huang, S.L., Cai, J.J., et al.: Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting. J. Mater. Chem. A 5, 7784–7790 (2017). https://doi.org/10.1039/c7ta01957b

    Article  CAS  Google Scholar 

  5. Chen, Z.L., Ha, Y., Jia, H.X., et al.: Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 9, 1803918 (2019). https://doi.org/10.1002/aenm.201803918

    Article  CAS  Google Scholar 

  6. Sun, H.M., Yan, Z.H., Liu, F.M., et al.: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32, 1806326 (2020). https://doi.org/10.1002/adma.201806326

    Article  CAS  Google Scholar 

  7. Ali, A., Shen, P.K.: Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: fundamentals to applications. Carbon Energy 2, 99–121 (2020). https://doi.org/10.1002/cey2.26

    Article  CAS  Google Scholar 

  8. Wang, J., Zhong, H.X., Wang, Z.L., et al.: Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10, 2342–2348 (2016). https://doi.org/10.1021/acsnano.5b07126

    Article  CAS  Google Scholar 

  9. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998

    Article  Google Scholar 

  10. Ali, A., Shen, P.K.: Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energy Rev. 3, 370–394 (2020). https://doi.org/10.1007/s41918-020-00066-3

    Article  CAS  Google Scholar 

  11. Hunter, B.M., Gray, H.B., Müller, A.M.: Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016). https://doi.org/10.1021/acs.chemrev.6b00398

    Article  CAS  Google Scholar 

  12. Zhang, J., Zhang, Q.Y., Feng, X.L.: Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31, 1808167 (2019). https://doi.org/10.1002/adma.201808167

    Article  CAS  Google Scholar 

  13. Xiong, B.Y., Chen, L.S., Shi, J.L.: Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 8, 3688–3707 (2018). https://doi.org/10.1021/acscatal.7b04286

    Article  CAS  Google Scholar 

  14. Huang, L., Wei, M., Zaman, S., et al.: Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting. Chem. Eng. J. 398, 125669 (2020). https://doi.org/10.1016/j.cej.2020.125669

    Article  CAS  Google Scholar 

  15. Yuan, Z.K., Li, J., Yang, M.J., et al.: Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 141, 4972–4979 (2019). https://doi.org/10.1021/jacs.9b00154

    Article  CAS  Google Scholar 

  16. Zhu, C.L., Yin, Z.X., Lai, W.H., et al.: Fe-Ni-Mo nitride porous nanotubes for full water splitting and Zn-air batteries. Adv. Energy Mater. 8, 1802327 (2018). https://doi.org/10.1002/aenm.201802327

    Article  CAS  Google Scholar 

  17. Yu, Y.D., Zhou, J., Sun, Z.M.: Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 30, 2000570 (2020). https://doi.org/10.1002/adfm.202000570

    Article  CAS  Google Scholar 

  18. Lian, Y.B., Sun, H., Wang, X.B., et al.: Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 10, 464–474 (2019). https://doi.org/10.1039/c8sc03877e

    Article  CAS  Google Scholar 

  19. Liu, Y.K., Jiang, S., Li, S.J., et al.: Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 247, 107–114 (2019). https://doi.org/10.1016/j.apcatb.2019.01.094

    Article  CAS  Google Scholar 

  20. Chunduri, A., Gupta, S., Bapat, O., et al.: A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting. Appl. Catal. B Environ. 259, 118051 (2019). https://doi.org/10.1016/j.apcatb.2019.118051

    Article  CAS  Google Scholar 

  21. Zhang, F.S., Wang, J.W., Luo, J., et al.: Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 9, 1375–1384 (2018). https://doi.org/10.1039/c7sc04569g

    Article  CAS  Google Scholar 

  22. Xiao, Z.H., Wang, Y., Huang, Y.C., et al.: Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10, 2563–2569 (2017). https://doi.org/10.1039/C7EE01917C

    Article  CAS  Google Scholar 

  23. Yan, L., Zhang, B., Zhu, J.L., et al.: Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Appl. Catal. B Environ. 265, 118555 (2020). https://doi.org/10.1016/j.apcatb.2019.118555

    Article  CAS  Google Scholar 

  24. Jin, Y., Yue, X., Shu, C., et al.: Three-dimensional porous MoNi4 networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 5, 2508–2513 (2017)

    Article  CAS  Google Scholar 

  25. Yu, P., Wang, F.M., Shifa, T.A., et al.: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 58, 244–276 (2019). https://doi.org/10.1016/j.nanoen.2019.01.017

    Article  CAS  Google Scholar 

  26. Anantharaj, S., Ede, S.R., Sakthikumar, K., et al.: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6, 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479

    Article  CAS  Google Scholar 

  27. Tang, T., Jiang, W.J., Niu, S., et al.: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139, 8320 (2017)

    Article  CAS  Google Scholar 

  28. Shi, Y., Zhang, B.: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1781 (2016). https://doi.org/10.1039/c6cs90013e

    Article  CAS  Google Scholar 

  29. Yan, Y., Xia, B.Y., Zhao, B., et al.: A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4, 17587 (2016)

    Article  CAS  Google Scholar 

  30. Jing, S.Y., Lu, J.J., Yu, G.T., et al.: Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution. Adv. Mater. 30, 1705979 (2018). https://doi.org/10.1002/adma.201705979

    Article  CAS  Google Scholar 

  31. Jayabal, S., Saranya, G., Wu, J., et al.: Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J. Mater. Chem. A 5, 24540–24563 (2017)

    Article  CAS  Google Scholar 

  32. Anantharaj, S., Kundu, S., Noda, S.: Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A 8, 4174–4192 (2020)

    Article  CAS  Google Scholar 

  33. Jin, Y.S., Huang, S.L., Yue, X., et al.: Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. Int. J. Hydrogen Energy 43, 12140–12145 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.181

    Article  CAS  Google Scholar 

  34. Tahir, M., Pan, L., Idrees, F., et al.: Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022

    Article  CAS  Google Scholar 

  35. Gong, M., Dai, H.J.: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23–39 (2015). https://doi.org/10.1007/s12274-014-0591-z

    Article  CAS  Google Scholar 

  36. Jamesh, M.I., Sun, X.M.: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting—a review. J. Power Sources 400, 31–68 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.125

    Article  CAS  Google Scholar 

  37. Wang, J., Yue, X., Yang, Y., et al.: Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J. Alloys Compd. 8, 153346 (2020)

    Article  Google Scholar 

  38. Wang, X.S., Vasileff, A., Jiao, Y., et al.: Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting. Adv. Mater. 31, 1803625 (2019). https://doi.org/10.1002/adma.201803625

    Article  CAS  Google Scholar 

  39. You, B., Sun, Y.J.: Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002

    Article  CAS  Google Scholar 

  40. Balogun, M.S., Huang, Y.C., Qiu, W.T., et al.: Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20, 425–451 (2017). https://doi.org/10.1016/j.mattod.2017.03.019

    Article  CAS  Google Scholar 

  41. Han, N., Liu, P.Y., Jiang, J., et al.: Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6, 19912–19933 (2018). https://doi.org/10.1039/c8ta06529b

    Article  CAS  Google Scholar 

  42. Jia, J.R., Zhai, M.K., Lv, J., et al.: Nickel molybdenum nitride nanorods grown on Ni foam as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 10, 30400–30408 (2018). https://doi.org/10.1021/acsami.8b09854

    Article  CAS  Google Scholar 

  43. Chen, Z.L., Ha, Y., Liu, Y., et al.: In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 10, 7134–7144 (2018). https://doi.org/10.1021/acsami.7b18858

    Article  CAS  Google Scholar 

  44. Jia, X.D., Zhao, Y.F., Chen, G.B., et al.: Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst. Adv. Energy Mater. 6, 1502585 (2016). https://doi.org/10.1002/aenm.201502585

    Article  CAS  Google Scholar 

  45. Xue, Z.L., Kang, J.Y., Guo, D., et al.: Self-supported cobalt nitride porous nanowire arrays as bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 273, 229–238 (2018). https://doi.org/10.1016/j.electacta.2018.04.056

    Article  CAS  Google Scholar 

  46. Gu, Y., Chen, S., Ren, J., et al.: Electronic structure tuning in Ni3FeN/rGO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 12, 245–253 (2018). https://doi.org/10.1021/acsnano.7b05971

    Article  CAS  Google Scholar 

  47. Shen, F.C., Sun, S.N., Xin, Z.F., et al.: Hierarchically phosphorus doped bimetallic nitrides arrays with unique interfaces for efficient water splitting. Appl. Catal. B Environ. 243, 470–480 (2019). https://doi.org/10.1016/j.apcatb.2018.10.012

    Article  CAS  Google Scholar 

  48. Shanker, G.S., Ogale, S.: Faceted colloidal metallic Ni3N nanocrystals: size-controlled solution-phase synthesis and electrochemical overall water splitting. ACS Appl. Energy Mater. 4, 2165–2173 (2021). https://doi.org/10.1021/acsaem.0c02674

    Article  CAS  Google Scholar 

  49. Li, Z.J., Jang, H., Qin, D.N., et al.: Alloy-strain-output induced lattice dislocation in Ni3FeN/Ni3Fe ultrathin nanosheets for highly efficient overall water splitting. J. Mater. Chem. A 9, 4036–4043 (2021). https://doi.org/10.1039/d0ta11618a

    Article  CAS  Google Scholar 

  50. Li, R.Q., Wan, X.Y., Chen, B.L., et al.: Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chem. Eng. J. 409, 128240 (2021). https://doi.org/10.1016/j.cej.2020.128240

    Article  CAS  Google Scholar 

  51. Zhang, B., Xiao, C.H., Xie, S.M., et al.: Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 28, 6934–6941 (2016). https://doi.org/10.1021/acs.chemmater.6b02610

    Article  CAS  Google Scholar 

  52. Yan, F., Wang, Y., Li, K.Y., et al.: Highly stable three-dimensional porous nickel-iron nitride nanosheets for full water splitting at high current densities. Chem. A Eur. J. 23, 10187–10194 (2017). https://doi.org/10.1002/chem.201701662

    Article  CAS  Google Scholar 

  53. Wang, Y.Y., Xie, C., Liu, D.D., et al.: Nanoparticle-stacked porous nickel–iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 8, 18652–18657 (2016). https://doi.org/10.1021/acsami.6b05811

    Article  CAS  Google Scholar 

  54. Wang, Y.Y., Liu, D.D., Liu, Z.J., et al.: Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun. 52, 12614–12617 (2016). https://doi.org/10.1039/c6cc06608a

    Article  CAS  Google Scholar 

  55. Hou, J.G., Sun, Y.Q., Li, Z.W., et al.: Electrical behavior and electron transfer modulation of nickel–copper nanoalloys confined in nickel–copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 28, 1803278 (2018). https://doi.org/10.1002/adfm.201803278

    Article  CAS  Google Scholar 

  56. Chen, Q., Wang, R., Yu, M.H., et al.: Bifunctional iron–nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 247, 666–673 (2017). https://doi.org/10.1016/j.electacta.2017.07.025

    Article  CAS  Google Scholar 

  57. Chen, C., Wu, A., Yan, H., et al.: Trapping [PMo12O40]3-clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci. 9, 4746–4755 (2018). https://doi.org/10.1039/c8sc01454j

    Article  CAS  Google Scholar 

  58. Kou, Z.K., Zhang, L., Ma, Y.Y., et al.: 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Appl. Catal. B Environ. 243, 678–685 (2019). https://doi.org/10.1016/j.apcatb.2018.11.008

    Article  CAS  Google Scholar 

  59. Li, M.X., Zhu, Y., Wang, H.Y., et al.: Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 9, 1803185 (2019). https://doi.org/10.1002/aenm.201803185

    Article  CAS  Google Scholar 

  60. Jiang, J., Liu, Q.X., Zeng, C.M., et al.: Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 5, 16929–16935 (2017). https://doi.org/10.1039/c7ta04893a

    Article  CAS  Google Scholar 

  61. Ai, L., Su, J., Wang, M., et al.: Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: an efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng. 6, 9912 (2018). https://doi.org/10.1021/acssuschemeng.8b01120

    Article  CAS  Google Scholar 

  62. Qiao, L.L., Zhu, A.Q., Zeng, W.X., et al.: Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. J. Mater. Chem. A 8, 2453–2462 (2020). https://doi.org/10.1039/c9ta10682k

    Article  CAS  Google Scholar 

  63. Xing, J.N., Li, Y., Guo, S.W., et al.: Molybdenum carbide in situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 298, 305–312 (2019). https://doi.org/10.1016/j.electacta.2018.12.091

    Article  CAS  Google Scholar 

  64. Wang, H., Cao, Y.J., Sun, C., et al.: Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting. Chemsuschem 10, 3540–3546 (2017). https://doi.org/10.1002/cssc.201701276

    Article  CAS  Google Scholar 

  65. Dutta, S., Indra, A., Han, H., et al.: An intriguing pea-like nanostructure of cobalt phosphide on molybdenum carbide incorporated nitrogen-doped carbon nanosheets for efficient electrochemical water splitting. Chemsuschem 11, 3956–3964 (2018). https://doi.org/10.1002/cssc.201801810

    Article  CAS  Google Scholar 

  66. Zhang, S.G., Gao, G.H., Zhu, H., et al.: In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Sci. Bull. 65, 640–650 (2020). https://doi.org/10.1016/j.scib.2020.02.003

    Article  CAS  Google Scholar 

  67. Yu, F., Zhou, H., Huang, Y., et al.: High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z

    Article  CAS  Google Scholar 

  68. Yan, Y., Xia, B.Y., Ge, X.M., et al.: A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chem. A Eur. J. 21, 18062–18067 (2015). https://doi.org/10.1002/chem.201503777

    Article  CAS  Google Scholar 

  69. Anjum, M.A.R., Okyay, M.S., Kim, M., et al.: Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy 53, 286–295 (2018). https://doi.org/10.1016/j.nanoen.2018.08.064

    Article  CAS  Google Scholar 

  70. Zhao, Z.H., Schipper, D.E., Leitner, A.P., et al.: Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. Nano Energy 39, 444–453 (2017). https://doi.org/10.1016/j.nanoen.2017.07.027

    Article  CAS  Google Scholar 

  71. Xu, H.B., Jia, H.X., Fei, B., et al.: Charge transfer engineering via multiple heteroatom doping in dual carbon-coupled cobalt phosphides for highly efficient overall water splitting. Appl. Catal. B Environ. 268, 118404 (2020). https://doi.org/10.1016/j.apcatb.2019.118404

    Article  CAS  Google Scholar 

  72. Xue, Z.H., Su, H., Yu, Q.Y., et al.: Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 7, 1602355 (2017). https://doi.org/10.1002/aenm.201602355

    Article  CAS  Google Scholar 

  73. Yan, L.T., Jiang, H.M., Xing, Y.L., et al.: Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. J. Mater. Chem. A 6, 1682–1691 (2018). https://doi.org/10.1039/c7ta10218f

    Article  CAS  Google Scholar 

  74. Yuan, C.Z., Zhong, S.L., Jiang, Y.F., et al.: Direct growth of cobalt-rich cobalt phosphide catalysts on cobalt foil: an efficient and self-supported bifunctional electrode for overall water splitting in alkaline media. J. Mater. Chem. A 5, 10561–10566 (2017). https://doi.org/10.1039/c7ta01776f

    Article  CAS  Google Scholar 

  75. Zhang, C., Xie, Y.C., Deng, H., et al.: Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 43, 7299–7306 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.157

    Article  CAS  Google Scholar 

  76. Yu, J., Li, Q.Q., Li, Y., et al.: Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727

    Article  CAS  Google Scholar 

  77. Yu, J., Li, Q.Q., Chen, N., et al.: Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 8, 27850–27858 (2016). https://doi.org/10.1021/acsami.6b10552

    Article  CAS  Google Scholar 

  78. Yan, L.T., Cao, L., Dai, P.C., et al.: Metal–organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv. Funct. Mater. 27, 1703455 (2017). https://doi.org/10.1002/adfm.201703455

    Article  CAS  Google Scholar 

  79. Xu, H., Wei, J.J., Zhang, K., et al.: Hierarchical NiMo phosphide nanosheets strongly anchored on carbon nanotubes as robust electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces 10, 29647–29655 (2018). https://doi.org/10.1021/acsami.8b10314

    Article  CAS  Google Scholar 

  80. Zhou, Z.Q., Mahmood, N., Zhang, Y.C., et al.: CoP nanoparticles embedded in P and N co-doped carbon as efficient bifunctional electrocatalyst for water splitting. J. Energy Chem. 26, 1223–1230 (2017). https://doi.org/10.1016/j.jechem.2017.07.021

    Article  Google Scholar 

  81. Yin, Z.X., Zhu, C.L., Li, C.Y., et al.: Hierarchical nickel-cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale 8, 19129–19138 (2016). https://doi.org/10.1039/c6nr07009d

    Article  CAS  Google Scholar 

  82. Wu, K.L., Chen, Z., Cheong, W.C., et al.: Toward bifunctional overall water splitting electrocatalyst: general preparation of transition metal phosphide nanoparticles decorated N-doped porous carbon spheres. ACS Appl. Mater. Interfaces 10, 44201–44208 (2018). https://doi.org/10.1021/acsami.8b14889

    Article  CAS  Google Scholar 

  83. Wei, S., Qi, K., Jin, Z., et al.: One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting. ACS Omega 1, 1367–1373 (2016). https://doi.org/10.1021/acsomega.6b00366

    Article  CAS  Google Scholar 

  84. Wang, P.Y., Pu, Z.H., Li, Y.H., et al.: Iron-doped nickel phosphide nanosheet arrays: an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 9, 26001–26007 (2017). https://doi.org/10.1021/acsami.7b06305

    Article  CAS  Google Scholar 

  85. Wang, P., Song, F., Amal, R., et al.: Efficient water splitting catalyzed by cobalt phosphide-based nanoneedle arrays supported on carbon cloth. Chemsuschem 9, 472–477 (2016). https://doi.org/10.1002/cssc.201501599

    Article  CAS  Google Scholar 

  86. Li, Y.J., Zhang, H.C., Jiang, M., et al.: Ternary NiCoP nanosheet arrays: an excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 9, 2251–2259 (2016). https://doi.org/10.1007/s12274-016-1112-z

    Article  CAS  Google Scholar 

  87. Mohite, S.V., Xing, R.M., Li, B.Y., et al.: Spatial compartmentalization of cobalt phosphide in P-doped dual carbon shells for efficient alkaline overall water splitting. Inorg. Chem. 59, 1996–2004 (2020). https://doi.org/10.1021/acs.inorgchem.9b03363

    Article  CAS  Google Scholar 

  88. He, L., Gong, L., Gao, M., et al.: In situ formation of NiCoP@phosphate nanocages as an efficient bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 337, 135799 (2020). https://doi.org/10.1016/j.electacta.2020.135799

    Article  CAS  Google Scholar 

  89. Yan, L., Zhang, B., Zhu, J.L., et al.: Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. J. Mater. Chem. A 7, 14271–14279 (2019). https://doi.org/10.1039/c9ta03686e

    Article  CAS  Google Scholar 

  90. Yan, L., Zhao, S.Z., Li, Y.Y., et al.: Hierarchical cobalt phosphide hollow nanoboxes as high performance bifunctional electrocatalysts for overall water splitting. Mater. Today Energy 12, 443–452 (2019). https://doi.org/10.1016/j.mtener.2019.04.007

    Article  Google Scholar 

  91. Dai, Z., Geng, H., Wang, J., et al.: Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 11, 11031–11040 (2017). https://doi.org/10.1021/acsnano.7b05050

    Article  CAS  Google Scholar 

  92. Yang, Y., Yao, H., Yu, Z., et al.: Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019). https://doi.org/10.1021/jacs.9b04492

    Article  CAS  Google Scholar 

  93. Guo, Y.N., Park, T., Yi, J.W., et al.: Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 31, 1807134 (2019). https://doi.org/10.1002/adma.201807134

    Article  CAS  Google Scholar 

  94. Liu, Y.P., Li, Q.J., Si, R., et al.: Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Adv. Mater. 29, 1606200 (2017). https://doi.org/10.1002/adma.201606200

    Article  CAS  Google Scholar 

  95. Zhu, H., Zhang, J.F., Yanzhang, R.P., et al.: When cubic cobalt sulfide meets layered molybdenum disulfide: a core–shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 27, 4752–4759 (2015). https://doi.org/10.1002/adma.201501969

    Article  CAS  Google Scholar 

  96. Zheng, X.R., Han, X.P., Zhang, Y.Q., et al.: Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale 11, 5646–5654 (2019). https://doi.org/10.1039/c8nr09902b

    Article  CAS  Google Scholar 

  97. Zhai, Z.J., Li, C., Zhang, L., et al.: Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A 6, 9833–9838 (2018). https://doi.org/10.1039/c8ta03304h

    Article  CAS  Google Scholar 

  98. Yang, Y.Q., Zhang, K., Lin, H.L., et al.: MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7, 2357–2366 (2017). https://doi.org/10.1021/acscatal.6b03192

    Article  CAS  Google Scholar 

  99. Shit, S., Chhetri, S., Jang, W., et al.: Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 10, 27712–27722 (2018). https://doi.org/10.1021/acsami.8b04223

    Article  CAS  Google Scholar 

  100. Ren, G., Hao, Q., Mao, J., et al.: Ultrafast fabrication of nickel sulfide film on Ni foam for efficient overall water splitting. Nanoscale 10, 17347–17353 (2018). https://doi.org/10.1039/c8nr05494k

    Article  CAS  Google Scholar 

  101. Yu, J., Cheng, G., Luo, W.: Ternary nickel-iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. J. Mater. Chem. A 5, 15838–15844 (2017). https://doi.org/10.1039/C7TA04438K

    Article  CAS  Google Scholar 

  102. Gao, H.W., Zang, J.B., Wang, Y.H., et al.: One-step preparation of cobalt-doped NiS@MoS2 core-shell nanorods as bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 377, 138051 (2021). https://doi.org/10.1016/j.electacta.2021.138051

    Article  CAS  Google Scholar 

  103. Zhang, Y., Guo, H.R., Li, X.P., et al.: A 3D multi-interface structure of coral-like Fe-Mo-S/Ni3S2@NF using for high-efficiency and stable overall water splitting. Chem. Eng. J. 404, 126483 (2021). https://doi.org/10.1016/j.cej.2020.126483

    Article  CAS  Google Scholar 

  104. Zhu, W., Yue, X., Zhang, W., et al.: Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52, 1486–1489 (2016). https://doi.org/10.1039/c5cc08064a

    Article  CAS  Google Scholar 

  105. Li, H., Chen, S., Zhang, Y., et al.: Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 9, 2452 (2018). https://doi.org/10.1038/s41467-018-04888-0

    Article  CAS  Google Scholar 

  106. Li, J.W., Xu, W.M., Luo, J.X., et al.: Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano Micro Lett. 10, 1–10 (2017). https://doi.org/10.1007/s40820-017-0160-6

    Article  CAS  Google Scholar 

  107. Hou, J.G., Zhang, B., Li, Z.W., et al.: Vertically aligned oxygenated-CoS2-MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting. ACS Catal. 8, 4612–4621 (2018). https://doi.org/10.1021/acscatal.8b00668

    Article  CAS  Google Scholar 

  108. Guo, Y., Tang, J., Wang, Z., et al.: Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47, 494–502 (2018). https://doi.org/10.1016/j.nanoen.2018.03.012

    Article  CAS  Google Scholar 

  109. Chen, P.Z., Zhou, T.P., Zhang, M.X., et al.: 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 29, 1701584 (2017). https://doi.org/10.1002/adma.201701584

    Article  CAS  Google Scholar 

  110. Lu, W.B., Liu, T.T., Xie, L.S., et al.: In situ derived Co-B nanoarray: a high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting. Small 13, 1700805 (2017). https://doi.org/10.1002/smll.201700805

    Article  CAS  Google Scholar 

  111. Chen, Z.J., Duan, X.G., Wei, W., et al.: Boride-based electrocatalysts: emerging candidates for water splitting. Nano Res. 13, 293–314 (2020). https://doi.org/10.1007/s12274-020-2618-y

    Article  CAS  Google Scholar 

  112. Chen, Z.J., Kang, Q., Cao, G.X., et al.: Study of cobalt boride-derived electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 43, 6076–6087 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.161

    Article  CAS  Google Scholar 

  113. Li, Y.J., Huang, B.L., Sun, Y.J., et al.: Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small 15, 1804212 (2019). https://doi.org/10.1002/smll.201804212

    Article  CAS  Google Scholar 

  114. Chen, X.C., Yu, Z.X., Wei, L., et al.: Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 7, 764–774 (2019). https://doi.org/10.1039/c8ta09130g

    Article  CAS  Google Scholar 

  115. Hao, W.J., Wu, R.B., Zhang, R.Q., et al.: Electroless plating of highly efficient bifunctional boride-based electrodes toward practical overall water splitting. Adv. Energy Mater. 8, 1801372 (2018). https://doi.org/10.1002/aenm.201801372

    Article  CAS  Google Scholar 

  116. Li, H., Wen, P., Li, Q., et al.: Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater. 7, 1700513 (2017). https://doi.org/10.1002/aenm.201700513

    Article  CAS  Google Scholar 

  117. Masa, J., Weide, P., Peeters, D., et al.: Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv. Energy Mater. 6(6), 1502313 (2016). https://doi.org/10.1002/aenm.201600980

    Article  CAS  Google Scholar 

  118. Xu, N., Cao, G., Chen, Z., et al.: Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 5, 12379–12384 (2017). https://doi.org/10.1039/c7ta02644g

    Article  CAS  Google Scholar 

  119. Tian, R.F., Zhao, S.J., Li, J.K., et al.: Pressure-promoted highly-ordered Fe-doped-Ni2B for effective oxygen evolution reaction and overall water splitting. J. Mater. Chem. A 9, 6469–6475 (2021). https://doi.org/10.1039/D0TA10010B

    Article  CAS  Google Scholar 

  120. Yuan, W.Y., Zhao, X.S., Hao, W.J., et al.: Performance of surface-oxidized Ni3B, Ni2B, and NiB2 electrocatalysts for overall water splitting. ChemElectroChem 6, 764–770 (2019). https://doi.org/10.1002/celc.201801354

    Article  CAS  Google Scholar 

  121. He, T., Nsanzimana, J.M.V., Qi, R., et al.: Synthesis of amorphous boride nanosheets by the chemical reduction of prussian blue analogs for efficient water electrolysis. J. Mater. Chem. A 6, 23289–23294 (2018). https://doi.org/10.1039/C8TA09609K

    Article  CAS  Google Scholar 

  122. Wu, Z., Nie, D., Song, M., et al.: Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 11, 7506–7512 (2019). https://doi.org/10.1039/c9nr01794a

    Article  CAS  Google Scholar 

  123. Wang, P., Qi, J., Li, C., et al.: Hierarchical CoNi2S4@NiMn-layered double hydroxide heterostructure nanoarrays on superhydrophilic carbon cloth for enhanced overall water splitting. Electrochim. Acta 345, 136247 (2020). https://doi.org/10.1016/j.electacta.2020.136247

    Article  CAS  Google Scholar 

  124. Wang, Y.Y., Yan, D.F., El Hankari, S., et al.: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018). https://doi.org/10.1002/advs.201800064

    Article  CAS  Google Scholar 

  125. Zhu, X., Tang, C., Wang, H.F., et al.: Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 4, 7245–7250 (2016). https://doi.org/10.1039/C6TA02216B

    Article  CAS  Google Scholar 

  126. Zhou, L., Jiang, S., Liu, Y., et al.: Ultrathin CoNiP@Layered double hydroxides core–shell nanosheets arrays for largely enhanced overall water splitting. ACS Appl. Energ. Mater. 1, 623–631 (2018). https://doi.org/10.1021/acsaem.7b00151

    Article  CAS  Google Scholar 

  127. Jia, Y., Zhang, L.Z., Gao, G.P., et al.: A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017). https://doi.org/10.1002/adma.201700017

    Article  CAS  Google Scholar 

  128. Islam, M.S., Kim, M., Jin, X.Y., et al.: Bifunctional 2D superlattice electrocatalysts of layered double hydroxide-transition metal dichalcogenide active for overall water splitting. ACS Energy Lett. 3, 952–960 (2018). https://doi.org/10.1021/acsenergylett.8b00134

    Article  CAS  Google Scholar 

  129. Hou, Y., Lohe, M.R., Zhang, J., et al.: Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci. 9, 478–483 (2016). https://doi.org/10.1039/C5EE03440J

    Article  CAS  Google Scholar 

  130. Babar, P., Lokhande, A., Shin, H.H., et al.: Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 14, 1702568 (2018). https://doi.org/10.1002/smll.201702568

    Article  CAS  Google Scholar 

  131. Yu, L., Zhou, H.Q., Sun, J.Y., et al.: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy 41, 327–336 (2017). https://doi.org/10.1016/j.nanoen.2017.09.045

    Article  CAS  Google Scholar 

  132. Ye, W., Fang, X.Y., Chen, X.B., et al.: A three-dimensional nickel-chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale 10, 19484–19491 (2018). https://doi.org/10.1039/c8nr05974h

    Article  CAS  Google Scholar 

  133. Rajeshkhanna, G., Singh, T.I., Kim, N.H., et al.: Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni- and Co-layered double hydroxides for overall water-splitting. ACS Appl. Mater. Interfaces 10, 42453–42468 (2018). https://doi.org/10.1021/acsami.8b16425

    Article  CAS  Google Scholar 

  134. Liu, W., Bao, J., Guan, M., et al.: Nickel-cobalt-layered double hydroxide nanosheet arrays on Ni foam as a bifunctional electrocatalyst for overall water splitting. Dalton Trans. 46, 8372–8376 (2017). https://doi.org/10.1039/c7dt00906b

    Article  CAS  Google Scholar 

  135. Fan, R., Mu, Q., Wei, Z., et al.: Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting. J. Mater. Chem. A 8, 9871–9881 (2020)

    Article  CAS  Google Scholar 

  136. Li, D.D., Hao, G.Y., Guo, W.J., et al.: Highly efficient Ni nanotube arrays and Ni nanotube arrays coupled with NiFe layered-double-hydroxide electrocatalysts for overall water splitting. J. Power Sources 448, 227434 (2020). https://doi.org/10.1016/j.jpowsour.2019.227434

    Article  CAS  Google Scholar 

  137. Tang, Y.H., Liu, Q., Dong, L., et al.: Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl. Catal. B Environ. 266, 118627 (2020). https://doi.org/10.1016/j.apcatb.2020.118627

    Article  CAS  Google Scholar 

  138. Dinh, K.N., Zheng, P.L., Dai, Z.F., et al.: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14, 1703257 (2018). https://doi.org/10.1002/smll.201703257

    Article  CAS  Google Scholar 

  139. Han, L.X., Diao, L.C., Qin, K.Q., et al.: Nitrogen modification enhances the electrocatalytic overall water splitting of NiFe layered double hydroxides in alkaline media. Mater. Lett. 263, 127162 (2020). https://doi.org/10.1016/j.matlet.2019.127162

    Article  CAS  Google Scholar 

  140. Shi, H.H., Liang, H.F., Ming, F.W., et al.: Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem. Int. Ed. 56, 573–577 (2017). https://doi.org/10.1002/anie.201610211

    Article  CAS  Google Scholar 

  141. Jin, Y.S., Wang, H.T., Li, J.J., et al.: Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28, 3785–3790 (2016). https://doi.org/10.1002/adma.201506314

    Article  CAS  Google Scholar 

  142. Li, Z., Niu, W.H., Zhou, L., et al.: Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting. ACS Energy Lett. 3, 892–898 (2018). https://doi.org/10.1021/acsenergylett.8b00174

    Article  CAS  Google Scholar 

  143. Yu, X.X., Yu, Z.Y., Zhang, X.L., et al.: Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 71, 104652 (2020). https://doi.org/10.1016/j.nanoen.2020.104652

    Article  CAS  Google Scholar 

  144. Zhao, Y.X., Chang, C., Teng, F., et al.: Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 7, 1700005 (2017). https://doi.org/10.1002/aenm.201700005

    Article  CAS  Google Scholar 

  145. Chi, K., Tian, X., Wang, Q.J., et al.: Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. J. Catal. 381, 44–52 (2020). https://doi.org/10.1016/j.jcat.2019.10.025

    Article  CAS  Google Scholar 

  146. Yan, X.D., Tian, L.H., Li, K.X., et al.: FeNi3/NiFeOx nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 3, 1600368 (2016). https://doi.org/10.1002/admi.201600368

    Article  CAS  Google Scholar 

  147. Wu, Z.C., Zou, Z.X., Huang, J.S., et al.: Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J. Catal. 358, 243–252 (2018). https://doi.org/10.1016/j.jcat.2017.12.020

    Article  CAS  Google Scholar 

  148. Wu, Z., Wang, X., Huang, J., et al.: Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 6, 167–178 (2018). https://doi.org/10.1039/C7TA07956G

    Article  CAS  Google Scholar 

  149. Wang, Z.C., Liu, H.L., Ge, R.X., et al.: Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8, 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594

    Article  CAS  Google Scholar 

  150. Shu, C., Kang, S., Jin, Y., et al.: Bifunctional porous non-precious metal WO2 hexahedral networks as an electrocatalyst for full water splitting. J. Mater. Chem. A 5, 9655–9660 (2017). https://doi.org/10.1039/C7TA01527E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Science and Technology Project (AA17204083, AB16380030), the link project of the National Natural Science Foundation of China and Fujian Province (U1705252), and the Natural Science Foundation of Guangdong Province (2015A030312007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Kang Shen.

Ethics declarations

Conflicts of Interest

On behalf corresponding author and of all listed co-authors declare no conflicts of financial or other interests regarding the work presented in this manuscript. Furthermore, all listed authors have read and approved this manuscript.

Ethical Statement

We declare that this manuscript is original scientific work and has not been and will not be published elsewhere, neither the whole manuscript nor parts of it.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Long, F. & Shen, P.K. Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts. Electrochem. Energy Rev. 5, 1 (2022). https://doi.org/10.1007/s41918-022-00136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00136-8

Keywords

Navigation