Skip to main content

Advertisement

Log in

Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs), which contain a single metal atom supported on a well-confined substrate, are among the most promising heterogeneous catalysts owing to their unique advantages, such as high intrinsic activity and selectivity, tunable bonds and coordination, abundant metal-containing active sites, and atomic economy. Since metal-support interactions (MSIs) in SACs exert a substantial influence on the catalytic properties, gaining a profound understanding and recognition of catalytic reactions depends greatly on investigating MSIs both experimentally and computationally. Hence, the engineering and modulation of MSIs are regarded as one of the most efficient methods to rationally design SACs with disruptively enhanced catalytic properties. In this review, we track the recent advances in SACs from an MSI perspective. We then discuss the existing MSIs in SACs and elucidate the significant role of strong MSIs in catalytic properties and mechanisms. The challenges hindering the rational design of supported SACs with strong MSIs, which are currently still far from being completely understood and overcome, are described. In addition, the correlation between strong MSIs and electrocatalytic activities in SACs, including an outlook to increase our understanding of MSIs, is discussed. Finally, the present review provides some perspectives and an in-depth understanding of strong MSIs to advance high-performing SACs.

Graphic Abstract

Metal-support interaction (MSI) in single metal atom catalysts (SMACs) is vital for regulating catalytic properties, including oxygen- and hydrogen-involving electrocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright© 2019, Springer Nature. Reproduced with permission. b Changes in the band structure followed by an increased number of Ce4+ ions per Cu site. Reprinted with permission from Ref. [40]. Copyright© 2020, Springer Nature. Reproduced with permission

Fig. 5

Copyright© 2018, American Chemical Society. Reproduced with permission. b The process of photogenerated electron excitation, transformation and localization. Reprinted with permission from Ref. [68]. Copyright© 2019, Springer Nature. Reproduced with permission. c Au SAs prefer to disperse and stabilize on step sites of CeO2 rather than terrace surfaces. Reprinted with permission from Ref. [69]. Copyright© 2017, American Chemical Society. Reproduced with permission

Fig. 6

Copyright© 2018, Springer Nature. Reproduced with permission

Fig. 7

Copyright© 2020, Royal Society of Chemistry. Reproduced with permission

Fig. 8

Copyright© 2020, John Wiley & Sons, Inc. Reproduced with permission

Fig. 9

Copyright© 2019, John Wiley & Sons, Inc. Reproduced with permission

Fig. 10

Copyright© 2020, Elsevier. Reproduced with permission. b, c Reaction free energy on two edge-N atoms (PtN2) and two carbon atoms (PtC2) and the chemical state of the corresponding intermediate. Reprinted with permission from Ref. [175]. Copyright© 2019, Springer Nature. Reproduced with permission

Fig. 11

Copyright© 2018, Springer Nature. Reproduced with permission. c–e CoN2+2 and CoN4 active moieties for the 4e ORR pathway (c) and corresponding reaction free energy (d) and chemical state (e). CoN2+2 is the more favorable configuration after comparison. Reprinted with permission from Ref. [188]. Copyright © 2019, Royal Society of Chemistry. Reproduced with permission

Fig. 12

Copyright© 2016, Springer Nature. Reproduced with permission

Fig. 13

Reproduced with permission from Ref [213], Wiley-VCH (2017). b Schematic showing the preparation of Co, Fe SA-coordinated N-doped carbon. Reprinted with permission from Ref. [214]. American Chemical Society (2017)

Fig. 14
Fig. 15
Fig. 16

Copyright© 2019, American Association for the Advancement of Science. Reproduced with permission

Fig. 17

Copyright© 2018, Springer Nature. Reproduced with permission

Fig. 18

Copyright© 2019, Springer Nature. Reproduced with permission

Fig. 19

Copyright © 2019, Springer Nature. Reproduced with permission

Similar content being viewed by others

References

  1. Liu, L., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu, C.L., Zhang, L., Gong, J.L.: Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12, 2620–2645 (2019). https://doi.org/10.1039/C9EE01202H

    Article  CAS  Google Scholar 

  3. Tang, Y., Li, Y.T., Fung, V., et al.: Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018). https://doi.org/10.1038/s41467-018-03235-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, H.B., Liu, G.G., Shi, L., et al.: Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343

    Article  CAS  Google Scholar 

  5. Zhu, C.Z., Fu, S.F., Shi, Q.R., et al.: Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017). https://doi.org/10.1002/anie.201703864

    Article  CAS  Google Scholar 

  6. Zhao, S., Yan, L.T., Luo, H.M., et al.: Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 47, 172–198 (2018). https://doi.org/10.1016/j.nanoen.2018.02.015

    Article  CAS  Google Scholar 

  7. Zhang, Y.Q., Guo, L., Tao, L., et al.: Defect-based single-atom electrocatalysts. Small Methods 3, 1800406 (2019). https://doi.org/10.1002/smtd.201800406

    Article  CAS  Google Scholar 

  8. Wang, L.X., Wang, L., Meng, X.J., et al.: New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 31, 1901905 (2019). https://doi.org/10.1002/adma.201901905

    Article  CAS  Google Scholar 

  9. Liu, M.M., Wang, L.L., Zhao, K.N., et al.: Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12, 2890–2923 (2019). https://doi.org/10.1039/c9ee01722d

    Article  CAS  Google Scholar 

  10. Beniya, A., Higashi, S.: Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019). https://doi.org/10.1038/s41929-019-0282-y

    Article  CAS  Google Scholar 

  11. Rode, A., Sharma, S., Mishra, D.K.: Carbon nanotubes: classification, method of preparation and pharmaceutical application. Curr Drug Deliv 15, 620–629 (2018). https://doi.org/10.2174/1567201815666171221124711

    Article  CAS  PubMed  Google Scholar 

  12. Thomas, J.M.: The enduring relevance and academic fascination of catalysis. Nat. Catal. 1, 2–5 (2018). https://doi.org/10.1038/s41929-017-0014-0

    Article  Google Scholar 

  13. Tauster, S.J., Fung, S.C., Garten, R.L.: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978). https://doi.org/10.1021/ja00469a029

    Article  CAS  Google Scholar 

  14. Tang, H.L., Wei, J.K., Liu, F., et al.: Strong metal-support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 138, 56–59 (2016). https://doi.org/10.1021/jacs.5b11306

    Article  CAS  PubMed  Google Scholar 

  15. Chen, J.Y., Wanyan, Y.J., Zeng, J.X., et al.: Surface engineering protocol to obtain an atomically dispersed Pt/CeO2 catalyst with high activity and stability for CO oxidation. ACS Sustain. Chem. Eng. 6, 14054–14062 (2018). https://doi.org/10.1021/acssuschemeng.8b02613

    Article  CAS  Google Scholar 

  16. Hu, P.P., Huang, Z.W., Amghouz, Z., et al.: Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53, 3418–3421 (2014). https://doi.org/10.1002/anie.201309248

    Article  CAS  Google Scholar 

  17. Zhu, Y.Z., Sokolowski, J., Song, X.C., et al.: Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 10, 1902844 (2020). https://doi.org/10.1002/aenm.202070051

    Article  CAS  Google Scholar 

  18. Lai, W.H., Miao, Z.C., Wang, Y.X., et al.: Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity. Adv. Energy Mater. 9, 1900722 (2019). https://doi.org/10.1002/aenm.201900722

    Article  CAS  Google Scholar 

  19. Fei, H.L., Dong, J.C., Feng, Y.X., et al.: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y

    Article  CAS  Google Scholar 

  20. Cui, X.J., Li, W., Ryabchuk, P., et al.: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018). https://doi.org/10.1038/s41929-018-0090-9

    Article  CAS  Google Scholar 

  21. Tauster, S.J.: Strong metal-support interactions. Acc. Chem. Res. 20, 389–394 (1987). https://doi.org/10.1021/ar00143a001

    Article  CAS  Google Scholar 

  22. Roberts, S., Gorte, R.J.: A study of the migration and stability of titania on a model Rh catalyst. J. Catal. 124, 553–556 (1990). https://doi.org/10.1016/0021-9517(90)90202-U

    Article  CAS  Google Scholar 

  23. Jiang, Z.Y., Jing, M.Z., Feng, X.B., et al.: Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: mechanism and application. Appl. Catal. B: Environ. 278, 119304 (2020). https://doi.org/10.1016/j.apcatb.2020.119304

    Article  CAS  Google Scholar 

  24. Chen, Y.J., Ji, S.F., Sun, W.M., et al.: Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 59, 1295–1301 (2020). https://doi.org/10.1002/anie.201912439

    Article  CAS  Google Scholar 

  25. Ye, X.X., Wang, H.W., Lin, Y., et al.: Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 12, 1401–1409 (2019). https://doi.org/10.1007/s12274-019-2351-6

    Article  CAS  Google Scholar 

  26. Li, J., Tang, Y., Ma, Y., et al.: In situ formation of isolated bimetallic PtCe sites of single-dispersed Pt on CeO2 for low-temperature CO oxidation. ACS Appl. Mater. Interfaces 10, 38134–38140 (2018). https://doi.org/10.1021/acsami.8b15585

    Article  CAS  PubMed  Google Scholar 

  27. Hoang, S., Guo, Y.B., Binder, A.J., et al.: Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 11, 1062 (2020). https://doi.org/10.1038/s41467-020-14816-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia, Y., Zhang, L.Z., Gao, G.P., et al.: A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017). https://doi.org/10.1002/adma.201700017

    Article  CAS  Google Scholar 

  29. Tyo, E.C., Vajda, S.: Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015). https://doi.org/10.1038/nnano.2015.140

    Article  CAS  PubMed  Google Scholar 

  30. Vayssilov, G.N., Lykhach, Y., Migani, A., et al.: Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011). https://doi.org/10.1038/nmat2976

    Article  CAS  PubMed  Google Scholar 

  31. Qiao, B.T., Liang, J.X., Wang, A.Q., et al.: Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 8, 2913–2924 (2015). https://doi.org/10.1007/s12274-015-0796-9

    Article  CAS  Google Scholar 

  32. Francàs, L., Corby, S., Selim, S., et al.: Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 10, 5208 (2019). https://doi.org/10.1038/s41467-019-13061-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, L.H., Han, L.L., Liu, H.X., et al.: Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 56, 13694–13698 (2017). https://doi.org/10.1002/anie.201706921

    Article  CAS  Google Scholar 

  34. Zhao, S., Chen, F., Duan, S.B., et al.: Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat. Commun. 10, 3824 (2019). https://doi.org/10.1038/s41467-019-11871-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Therrien, A.J., Hensley, A.J.R., Marcinkowski, M.D., et al.: An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018). https://doi.org/10.1038/s41929-018-0028-2

    Article  CAS  Google Scholar 

  36. Chen, M.S., Goodman, D.W.: The structure of catalytically active gold on titania. Science 306, 252–255 (2004). https://doi.org/10.1002/chin.200501020

    Article  CAS  PubMed  Google Scholar 

  37. Luches, P., Pagliuca, F., Valeri, S., et al.: Nature of Ag islands and nanoparticles on the CeO2(111) surface. J. Phys. Chem. C 116, 1122–1132 (2012). https://doi.org/10.1021/jp210241c

    Article  CAS  Google Scholar 

  38. Daelman, N., Capdevila-Cortada, M., López, N.: Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019). https://doi.org/10.1038/s41563-019-0444-y

    Article  CAS  PubMed  Google Scholar 

  39. O’Connor, N.J., Jonayat, A.S.M., Janik, M.J., et al.: Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018). https://doi.org/10.1038/s41929-018-0094-5

    Article  CAS  Google Scholar 

  40. Kang, L.Q., Wang, B.L., Bing, Q.M., et al.: Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria. Nat. Commun. 11, 4008 (2020). https://doi.org/10.1038/s41467-020-17852-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jakub, Z., Hulva, J., Meier, M., et al.: Local structure and coordination define adsorption in a model Ir1/Fe3O4 single-atom catalyst. Angew. Chem. Int. Ed. 58, 13961–13968 (2019). https://doi.org/10.1002/anie.201907536

    Article  CAS  Google Scholar 

  42. Wei, S.T., Cui, X.Q., Xu, Y.C., et al.: Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. 4, 368–374 (2018). https://doi.org/10.1021/acsenergylett.8b01840

    Article  CAS  Google Scholar 

  43. Zhang, X.Y., Sun, Z.C., Wang, B., et al.: C-C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 140, 954–962 (2018). https://doi.org/10.1021/jacs.7b09314

    Article  CAS  PubMed  Google Scholar 

  44. Chen, S., Chen, Z.N., Fang, W.H., et al.: Ag10Ti28-oxo cluster containing single-atom silver sites: atomic structure and synergistic electronic properties. Angew. Chem. Int. Ed. 58, 10932–10935 (2019). https://doi.org/10.1002/anie.201904680

    Article  CAS  Google Scholar 

  45. Cao, S.F., Zhao, Y.Y., Lee, S., et al.: High-loading single Pt atom sites [Pt-O(OH)x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions. Sci. Adv. 6, eaba3809 (2020). https://doi.org/10.1126/sciadv.aba3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, P., Zhao, Y., Qin, R., et al.: Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016). https://doi.org/10.1126/science.aaf5251

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, S., Huang, Z.Q., Ma, Y.Y., et al.: Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat. Commun. 8, 15266 (2017). https://doi.org/10.1038/ncomms15266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie, P.F., Pu, T.C., Nie, A.M., et al.: Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8, 4044–4048 (2018). https://doi.org/10.1021/acscatal.8b00004

    Article  CAS  Google Scholar 

  49. Tian, S.B., Gong, W.B., Chen, W.X., et al.: Regulating the catalytic performance of single-atomic-site Ir catalyst for biomass conversion by metal-support interactions. ACS Catal. 9, 5223–5230 (2019). https://doi.org/10.1021/acscatal.9b00322

    Article  CAS  Google Scholar 

  50. Zhou, X., Shen, Q., Yuan, K.D., et al.: Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 140, 554–557 (2018). https://doi.org/10.1021/jacs.7b10394

    Article  CAS  PubMed  Google Scholar 

  51. Yu, Y.K., Qu, S.H., Zang, D.Y., et al.: Fast synthesis of Pt nanocrystals and Pt/microporous La2O3 materials using acoustic levitation. Nanoscale Res. Lett. 13, 50 (2018). https://doi.org/10.1186/s11671-018-2467-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, X.L., Liu, J.C., Xiao, H., et al.: Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 140, 46–49 (2018). https://doi.org/10.1021/jacs.7b10354

    Article  CAS  PubMed  Google Scholar 

  53. Tang, Y., Wei, Y.C., Wang, Z.Y., et al.: Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 141, 7283–7293 (2019). https://doi.org/10.1021/jacs.8b10910

    Article  CAS  PubMed  Google Scholar 

  54. Rehman, S., Kim, H., Farooq Khan, M., et al.: Tuning of ionic mobility to improve the resistive switching behavior of Zn-doped CeO2. Sci Rep 9, 19387 (2019). https://doi.org/10.1038/s41598-019-55716-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo, Z.Y., Ouyang, Y.X., Zhang, H., et al.: Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9, 2120 (2018). https://doi.org/10.1038/s41467-018-04501-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pereira-Hernández, X.I., DeLaRiva, A., Muravev, V., et al.: Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10, 1358 (2019). https://doi.org/10.1038/s41467-019-09308-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nie, L., Mei, D.H., Xiong, H.F., et al.: Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017). https://doi.org/10.1126/science.aao2109

    Article  CAS  PubMed  Google Scholar 

  58. Huang, Z.W., Gu, X., Cao, Q.Q., et al.: Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. Int. Ed. 51, 4198–4203 (2012). https://doi.org/10.1002/anie.201109065

    Article  CAS  Google Scholar 

  59. Chen, J., Yan, D.X., Xu, Z., et al.: A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol. 52, 4728–4737 (2018). https://doi.org/10.1021/acs.est.7b06039

    Article  CAS  PubMed  Google Scholar 

  60. Li, T.B., Liu, F., Tang, Y., et al.: Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem. Int. Ed. 57, 7795–7799 (2018). https://doi.org/10.1002/anie.201803272

    Article  CAS  Google Scholar 

  61. Harzandi, A.M., Shadman, S., Nissimagoudar, A.S., et al.: Ruthenium core-shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 11, 2003448 (2021). https://doi.org/10.1002/aenm.202003448

    Article  CAS  Google Scholar 

  62. Dong, S.H., Li, B., Cui, X.F., et al.: Photoresponses of supported Au single atoms on TiO2(110) through the metal-induced gap states. J. Phys. Chem. Lett. 10, 4683–4691 (2019). https://doi.org/10.1021/acs.jpclett.9b01527

    Article  CAS  PubMed  Google Scholar 

  63. DeRita, L., Dai, S., Lopez-Zepeda, K., et al.: Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt Atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017). https://doi.org/10.1021/jacs.7b07093

    Article  CAS  PubMed  Google Scholar 

  64. Lin, X., Nilius, N., Sterrer, M., et al.: Characterizing low-coordinated atoms at the periphery of MgO-supported Au islands using scanning tunneling microscopy and electronic structure calculations. Phys. Rev. B 81, 153406 (2010). https://doi.org/10.1103/physrevb.81.153406

    Article  Google Scholar 

  65. Farnesi Camellone, M., Negreiros Ribeiro, F., Szabová, L., et al.: Catalytic proton dynamics at the water/solid interface of ceria-supported Pt clusters. J. Am. Chem. Soc. 138, 11560–11567 (2016). https://doi.org/10.1021/jacs.6b03446

    Article  CAS  PubMed  Google Scholar 

  66. Hammer, B.: Special sites at noble and late transition metal catalysts. Top. Catal. 37, 3–16 (2006). https://doi.org/10.1007/s11244-006-0004-y

    Article  CAS  Google Scholar 

  67. Guo, Y., Mei, S., Yuan, K., et al.: Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 8, 6203–6215 (2018). https://doi.org/10.1021/acscatal.7b04469

    Article  CAS  Google Scholar 

  68. Lee, B.H., Park, S., Kim, M., et al.: Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019). https://doi.org/10.1038/s41563-019-0344-1

    Article  CAS  PubMed  Google Scholar 

  69. Liu, J.C., Wang, Y.G., Li, J.: Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J. Am. Chem. Soc. 139, 6190–6199 (2017). https://doi.org/10.1021/jacs.7b01602

    Article  CAS  PubMed  Google Scholar 

  70. Bruix, A., Rodriguez, J.A., Ramírez, P.J., et al.: A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012). https://doi.org/10.1021/ja302070k

    Article  CAS  PubMed  Google Scholar 

  71. Fu, Q., Saltsburg, H., Flytzani-Stephanopoulos, M.: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003). https://doi.org/10.1126/science.1085721

    Article  CAS  PubMed  Google Scholar 

  72. Bliem, R., McDermott, E., Ferstl, P., et al.: Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 346, 1215–1218 (2014). https://doi.org/10.1126/science.1260556

    Article  CAS  PubMed  Google Scholar 

  73. Bliem, R., Kosak, R., Perneczky, L., et al.: Cluster nucleation and growth from a highly supersaturated adatom phase: silver on magnetite. ACS Nano 8, 7531–7537 (2014). https://doi.org/10.1021/nn502895s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, S.L., Abdel-Mageed, A.M., Li, D., et al.: Morphology-engineered highly active and stable Ru/TiO2 catalysts for selective CO methanation. Angew. Chem. Int. Ed. 58, 10732–10736 (2019). https://doi.org/10.1002/anie.201903882

    Article  CAS  Google Scholar 

  75. Mitchell, R.W., Lloyd, D.C., van de Water, L.G.A., et al.: Effect of pretreatment method on the nanostructure and performance of supported Co catalysts in Fischer-Tropsch synthesis. ACS Catal. 8, 8816–8829 (2018). https://doi.org/10.1021/acscatal.8b02320

    Article  CAS  Google Scholar 

  76. Guzman, J., Carrettin, S., Corma, A.: Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 127, 3286–3287 (2005). https://doi.org/10.1021/ja043752s

    Article  CAS  PubMed  Google Scholar 

  77. Bratlie, K.M., Lee, H., Komvopoulos, K., et al.: Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7, 3097–3101 (2007). https://doi.org/10.1021/nl0716000

    Article  CAS  PubMed  Google Scholar 

  78. Millet, M.M., Algara-Siller, G., Wrabetz, S., et al.: Ni single atom catalysts for CO2 activation. J. Am. Chem. Soc. 141, 2451–2461 (2019). https://doi.org/10.1021/jacs.8b11729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kunwar, D., Zhou, S., DeLaRiva, A., et al.: Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9, 3978–3990 (2019). https://doi.org/10.1021/acscatal.8b04885

    Article  CAS  Google Scholar 

  80. Su, Y.Q., Wang, Y.F., Liu, J.X., et al.: Theoretical approach to predict the stability of supported single-atom catalysts. ACS Catal. 9, 3289–3297 (2019). https://doi.org/10.1021/acscatal.9b00252

    Article  CAS  Google Scholar 

  81. Besenbacher, F., Chorkendorff, I., Clausen, B.S., et al.: Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998). https://doi.org/10.1126/science.279.5358.1913

    Article  CAS  PubMed  Google Scholar 

  82. Giannakakis, G., Flytzani-Stephanopoulos, M., Sykes, E.C.H.: Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 52, 237–247 (2019). https://doi.org/10.1021/acs.accounts.8b00490

    Article  CAS  PubMed  Google Scholar 

  83. Marcinkowski, M.D., Liu, J.L., Murphy, C.J., et al.: Selective formic acid dehydrogenation on Pt-Cu single-atom alloys. ACS Catal. 7, 413–420 (2017). https://doi.org/10.1021/acscatal.6b02772

    Article  CAS  Google Scholar 

  84. Xu, L., Stangland, E.E., Mavrikakis, M.: Ethylene versus ethane: a DFT-based selectivity descriptor for efficient catalyst screening. J. Catal. 362, 18–24 (2018). https://doi.org/10.1016/j.jcat.2018.03.019

    Article  CAS  Google Scholar 

  85. Studt, F., Abild-Pedersen, F., Bligaard, T., et al.: Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008). https://doi.org/10.1126/science.1156660

    Article  CAS  PubMed  Google Scholar 

  86. Liu, J.L., Lucci, F.R., Yang, M., et al.: Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016). https://doi.org/10.1021/jacs.6b03339

    Article  CAS  PubMed  Google Scholar 

  87. Lucci, F.R., Liu, J.L., Marcinkowski, M.D., et al.: Selective hydrogenation of 1, 3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015). https://doi.org/10.1038/ncomms9550

    Article  CAS  PubMed  Google Scholar 

  88. Shan, J.J., Janvelyan, N., Li, H., et al.: Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys. Appl. Catal. B: Environ. 205, 541–550 (2017). https://doi.org/10.1016/j.apcatb.2016.12.045

    Article  CAS  Google Scholar 

  89. Giannakakis, G., Trimpalis, A., Shan, J.J., et al.: NiAu single atom alloys for the non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Top. Catal. 61, 475–486 (2018). https://doi.org/10.1007/s11244-017-0883-0

    Article  CAS  Google Scholar 

  90. Simonovis, J.P., Hunt, A., Palomino, R.M., et al.: Enhanced stability of Pt-Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO. J. Phys. Chem. C 122, 4488–4495 (2018). https://doi.org/10.1021/acs.jpcc.8b00078

    Article  CAS  Google Scholar 

  91. Li, B.Q., Zhao, C.X., Chen, S.M., et al.: Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 31, 1900592 (2019). https://doi.org/10.1002/adma.201900592

    Article  CAS  Google Scholar 

  92. Li, M.F., Duanmu, K.N., Wan, C.Z., et al.: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019). https://doi.org/10.1038/s41929-019-0279-6

    Article  CAS  Google Scholar 

  93. Patel, P.P., Datta, M.K., Velikokhatnyi, O.I., et al.: Nanostructured robust cobalt metal alloy based anode electro-catalysts exhibiting remarkably high performance and durability for proton exchange membrane fuel cells. J. Mater. Chem. A 3, 14015–14032 (2015). https://doi.org/10.1039/c5ta01362c

    Article  CAS  Google Scholar 

  94. Chen, C.H., Wu, D.Y., Li, Z., et al.: Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9, 1803913 (2019). https://doi.org/10.1002/aenm.201803913

    Article  CAS  Google Scholar 

  95. Stamenkovic, V.R., Fowler, B., Mun, B.S., et al.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007). https://doi.org/10.1126/science.1135941

    Article  CAS  PubMed  Google Scholar 

  96. Greiner, M.T., Jones, T.E., Beeg, S., et al.: Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018). https://doi.org/10.1038/s41557-018-0125-5

    Article  CAS  PubMed  Google Scholar 

  97. Duchesne, P.N., Li, Z.Y., Deming, C.P., et al.: Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5

    Article  CAS  PubMed  Google Scholar 

  98. Jørgensen, M., Grönbeck, H.: Selective acetylene hydrogenation over single-atom alloy nanoparticles by kinetic Monte Carlo. J. Am. Chem. Soc. 141, 8541–8549 (2019). https://doi.org/10.1021/jacs.9b02132

    Article  CAS  PubMed  Google Scholar 

  99. Nakaya, Y., Hirayama, J., Yamazoe, S., et al.: Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 11, 2838 (2020). https://doi.org/10.1038/s41467-020-16693-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, L., Zhang, L.R., Yao, L.Y., et al.: Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 12, 3099–3105 (2019). https://doi.org/10.1039/c9ee01564g

    Article  CAS  Google Scholar 

  101. Yao, Y.C., Hu, S.L., Chen, W.X., et al.: Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2, 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2

    Article  CAS  Google Scholar 

  102. Vojvodic, A., Nørskov, J.K., Abild-Pedersen, F.: Electronic structure effects in transition metal surface chemistry. Top. Catal. 57, 25–32 (2014). https://doi.org/10.1007/s11244-013-0159-2

    Article  CAS  Google Scholar 

  103. Xin, H.L., Linic, S.: Communications: exceptions to the d-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d-states. J. Chem. Phys. 132, 221101 (2010). https://doi.org/10.1063/1.3437609

    Article  CAS  PubMed  Google Scholar 

  104. Xin, H.L., Vojvodic, A., Voss, J., et al.: Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B 89, 115114 (2014). https://doi.org/10.1103/physrevb.89.115114

    Article  Google Scholar 

  105. Chattot, R., Le Bacq, O., Beermann, V., et al.: Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018). https://doi.org/10.1038/s41563-018-0133-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, Z.L., Xu, S.M., Xu, Y.Q., et al.: Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 10, 378–384 (2019). https://doi.org/10.1039/c8sc04480e

    Article  CAS  PubMed  Google Scholar 

  107. Li, P.S., Wang, M.Y., Duan, X.X., et al.: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lu, X., Zhao, C.: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015). https://doi.org/10.1038/ncomms7616

    Article  CAS  PubMed  Google Scholar 

  109. Song, F., Hu, X.: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014). https://doi.org/10.1038/ncomms5477

    Article  CAS  PubMed  Google Scholar 

  110. Gong, M., Li, Y.G., Wang, H.L., et al.: An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013). https://doi.org/10.1021/ja4027715

    Article  CAS  PubMed  Google Scholar 

  111. Friebel, D., Louie, M.W., Bajdich, M., et al.: Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015). https://doi.org/10.1021/ja511559d

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, J.F., Liu, J.Y., Xi, L.F., et al.: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140, 3876–3879 (2018). https://doi.org/10.1021/jacs.8b00752

    Article  CAS  PubMed  Google Scholar 

  113. Oliver-Tolentino, M.A., Vázquez-Samperio, J., Manzo-Robledo, A., et al.: An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni-Fe LDH. J. Phys. Chem. C 118, 22432–22438 (2014). https://doi.org/10.1021/jp506946b

    Article  CAS  Google Scholar 

  114. Görlin, M., Chernev, P., Ferreira de Araújo, J., et al.: Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016). https://doi.org/10.1021/jacs.6b00332

    Article  CAS  PubMed  Google Scholar 

  115. Trotochaud, L., Young, S.L., Ranney, J.K., et al.: Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014). https://doi.org/10.1021/ja502379c

    Article  CAS  PubMed  Google Scholar 

  116. Dong, Y., Zhang, P.X., Kou, Y.L., et al.: A first-principles study of oxygen formation over NiFe-layered double hydroxides surface. Catal. Lett. 145, 1541–1548 (2015). https://doi.org/10.1007/s10562-015-1561-0

    Article  CAS  Google Scholar 

  117. Lu, Z.Y., Xu, W.W., Zhu, W., et al.: Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50, 6479–6482 (2014). https://doi.org/10.1039/c4cc01625d

    Article  CAS  Google Scholar 

  118. Kou, Z.K., Zang, W.J., Pei, W., et al.: A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. J. Mater. Chem. A 8, 3071–3082 (2020). https://doi.org/10.1039/c9ta12838g

    Article  CAS  Google Scholar 

  119. Gao, Q.S., Zhang, W.B., Shi, Z.P., et al.: Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 31, 1802880 (2019). https://doi.org/10.1002/adma.201802880

    Article  CAS  Google Scholar 

  120. Levy, R.B., Boudart, M.: Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973). https://doi.org/10.1126/science.181.4099.547

    Article  CAS  PubMed  Google Scholar 

  121. Ma, Y.Y., Yang, T., Zou, H.Y., et al.: Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 32, 2002177 (2020). https://doi.org/10.1002/adma.202002177

    Article  CAS  Google Scholar 

  122. Liao, L., Wang, S.N., Xiao, J.J., et al.: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014). https://doi.org/10.1039/c3ee42441c

    Article  CAS  Google Scholar 

  123. Vrubel, H., Hu, X.L.: Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 51, 12703–12706 (2012). https://doi.org/10.1002/anie.201207111

    Article  CAS  Google Scholar 

  124. Hwu, H.H., Chen, J.G.: Surface chemistry of transition metal carbides. Chem. Rev. 105, 185–212 (2005). https://doi.org/10.1021/cr0204606

    Article  CAS  PubMed  Google Scholar 

  125. Michalsky, R., Zhang, Y.J., Peterson, A.A.: Trends in the hydrogen evolution activity of metal carbide catalysts. ACS Catal. 4, 1274–1278 (2014). https://doi.org/10.1021/cs500056u

    Article  CAS  Google Scholar 

  126. Esposito, D.V., Chen, J.G.: Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy Environ. Sci. 4, 3900–3912 (2011). https://doi.org/10.1039/c1ee01851e

    Article  CAS  Google Scholar 

  127. Yang, S., Kim, J., Tak, Y.J., et al.: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 128, 2098–2102 (2016). https://doi.org/10.1002/ange.201509241

    Article  Google Scholar 

  128. Yang, S., Tak, Y.J., Kim, J., et al.: Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899

    Article  CAS  Google Scholar 

  129. Sahoo, S.K., Ye, Y., Lee, S., et al.: Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 4, 126–132 (2019). https://doi.org/10.1021/acsenergylett.8b01942

    Article  CAS  Google Scholar 

  130. Shin, S., Kim, J., Park, S., et al.: Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chem. Commun. 55, 6389–6392 (2019). https://doi.org/10.1039/c9cc01593k

    Article  CAS  Google Scholar 

  131. Ma, Y., Ren, Y.J., Zhou, Y.N., et al.: High-density and thermally stable palladium single-atom catalysts for chemoselective hydrogenations. Angew. Chem. Int. Ed. 59, 21613–21619 (2020). https://doi.org/10.1002/anie.202007707

    Article  CAS  Google Scholar 

  132. Yu, J.Y., Wang, A.Z., Yu, W.Q., et al.: Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Appl. Catal. B: Environ. 277, 119236 (2020). https://doi.org/10.1016/j.apcatb.2020.119236

    Article  CAS  Google Scholar 

  133. He, J.N., Cui, Z.D., Zhu, S.L., et al.: Insight into the electrochemical-cycling activation of Pt/molybdenum carbide toward synergistic hydrogen evolution catalysis. J. Catal. 384, 169–176 (2020). https://doi.org/10.1016/j.jcat.2020.02.020

    Article  CAS  Google Scholar 

  134. Ramalingam, V., Varadhan, P., Fu, H.C., et al.: Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31, 1903841 (2019). https://doi.org/10.1002/adma.201903841

    Article  CAS  Google Scholar 

  135. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98

    Article  CAS  Google Scholar 

  136. Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al.: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970

    Article  CAS  PubMed  Google Scholar 

  137. Fu, H.C., Ramalingam, V., Kim, H., et al.: Solar cells: MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. 9, 1970083 (2019). https://doi.org/10.1002/aenm.201970083

    Article  CAS  Google Scholar 

  138. Lukatskaya, M.R., Mashtalir, O., Ren, C.E., et al.: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488

    Article  CAS  PubMed  Google Scholar 

  139. Naguib, M., Halim, J., Lu, J., et al.: New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013). https://doi.org/10.1021/ja405735d

    Article  CAS  PubMed  Google Scholar 

  140. Xie, X.Q., Zhao, M.Q., Anasori, B., et al.: Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005

    Article  CAS  Google Scholar 

  141. Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 127, 3979–3983 (2015). https://doi.org/10.1002/ange.201410174

    Article  Google Scholar 

  142. Pandey, M., Thygesen, K.S.: Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study. J. Phys. Chem. C 121, 13593–13598 (2017). https://doi.org/10.1021/acs.jpcc.7b05270

    Article  CAS  Google Scholar 

  143. Zhu, C.Z., Shi, Q.R., Feng, S., et al.: Single-atom catalysts for electrochemical water splitting. ACS Energy Lett. 3, 1713–1721 (2018). https://doi.org/10.1021/acsenergylett.8b00640

    Article  CAS  Google Scholar 

  144. Li, Z., Cui, Y.R., Wu, Z.W., et al.: Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018). https://doi.org/10.1038/s41929-018-0067-8

    Article  CAS  Google Scholar 

  145. Li, Z., Yu, L., Milligan, C., et al.: Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 9, 1–8 (2018). https://doi.org/10.1038/s41467-018-07502-5

    Article  CAS  Google Scholar 

  146. Zhao, D., Chen, Z., Yang, W., et al.: MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, J.Q., Zhao, Y.F., Guo, X., et al.: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1

    Article  CAS  Google Scholar 

  148. Huang, B., Li, N., Ong, W.J., et al.: Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 7, 27620–27631 (2019). https://doi.org/10.1039/c9ta09776g

    Article  CAS  Google Scholar 

  149. Lv, X., Wei, W., Zhao, P., et al.: Oxygen-terminated BiXenes and derived single atom catalysts for the hydrogen evolution reaction. J. Catal. 378, 97–103 (2019). https://doi.org/10.1016/j.jcat.2019.08.019

    Article  CAS  Google Scholar 

  150. Kan, D.X., Lian, R.Q., Wang, D.S., et al.: Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J. Mater. Chem. A 8, 17065–17077 (2020). https://doi.org/10.1039/d0ta04429f

    Article  CAS  Google Scholar 

  151. Liu, C.Y., Li, E.Y.: Termination effects of Pt/v-Tin+1CnT2 MXene surfaces for oxygen reduction reaction catalysis. ACS Appl. Mater. Interfaces 11, 1638–1644 (2019). https://doi.org/10.1021/acsami.8b17600

    Article  CAS  PubMed  Google Scholar 

  152. Morales-García, Á., Calle-Vallejo, F., Illas, F.: MXenes: new horizons in catalysis. ACS Catal. 10, 13487–13503 (2020). https://doi.org/10.1021/acscatal.0c03106

    Article  CAS  Google Scholar 

  153. Oschinski, H., Morales-García, Á., Illas, F.: Interaction of first row transition metals with M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MXenes: a quest for single-atom catalysts. J. Phys. Chem. C 125, 2477–2484 (2021). https://doi.org/10.1021/acs.jpcc.0c10877

    Article  CAS  Google Scholar 

  154. Guo, Z.L., Zhou, J., Sun, Z.M.: New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5, 23530–23535 (2017). https://doi.org/10.1039/c7ta08665b

    Article  CAS  Google Scholar 

  155. Zafari, M., Nissimagoudar, A.S., Umer, M., et al.: First principles and machine learning based superior catalytic activities and selectivities for N2 reduction in MBenes, defective 2D materials and 2D π-conjugated polymer-supported single atom catalysts. J. Mater. Chem. A 9, 9203–9213 (2021). https://doi.org/10.1039/d1ta00751c

    Article  CAS  Google Scholar 

  156. Kim, D.Y., Ha, M.R., Kim, K.S.: A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. J. Mater. Chem. A 9, 3511–3519 (2021). https://doi.org/10.1039/d0ta02425b

    Article  CAS  Google Scholar 

  157. Deng, D.H., Chen, X.Q., Yu, L., et al.: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462 (2015). https://doi.org/10.1126/sciadv.1500462

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gao, K., Wang, B., Tao, L., et al.: Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and co-doping. Adv. Mater. 31, 1805121 (2019). https://doi.org/10.1002/adma.201805121

    Article  CAS  Google Scholar 

  159. Cheon, J.Y., Kim, J.H., Kim, J.H., et al.: Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. J. Am. Chem. Soc. 136, 8875–8878 (2014). https://doi.org/10.1021/ja503557x

    Article  CAS  PubMed  Google Scholar 

  160. Zhao, S.L., Wang, D.W., Amal, R., et al.: Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 31, 1801526 (2019). https://doi.org/10.1002/adma.201801526

    Article  CAS  Google Scholar 

  161. Zhang, L.P., Lin, C.Y., Zhang, D.T., et al.: Guiding principles for designing highly efficient metal-free carbon catalysts. Adv. Mater. 31, 1805252 (2019). https://doi.org/10.1002/adma.201805252

    Article  CAS  Google Scholar 

  162. Xu, H.X., Cheng, D.J., Cao, D.P., et al.: A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018). https://doi.org/10.1038/s41929-018-0063-z

    Article  CAS  Google Scholar 

  163. Li, Z., Chen, Y.J., Ji, S.F., et al.: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 12, 764–772 (2020). https://doi.org/10.1038/s41557-020-0473-9

    Article  CAS  PubMed  Google Scholar 

  164. Chen, Y.X., Huang, Z.W., Ma, Z., et al.: Fabrication, characterization, and stability of supported single-atom catalysts. Catal. Sci. Technol. 7, 4250–4258 (2017). https://doi.org/10.1039/c7cy00723j

    Article  CAS  Google Scholar 

  165. Yuan, K., Sfaelou, S., Qiu, M., et al.: Synergetic contribution of boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 3, 252–260 (2018). https://doi.org/10.1021/acsenergylett.7b01188

    Article  CAS  Google Scholar 

  166. Gong, K., Du, F., Xia, Z., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  167. Wang, X.Y., Peng, X.B., Chen, W., et al.: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nat. Commun. 11, 653 (2020). https://doi.org/10.1038/s41467-020-14287-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, Y., Wen, H.J., Yang, J., et al.: Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitution of catalytic active sites. Carbon 142, 1–12 (2019). https://doi.org/10.1016/j.carbon.2018.09.079

    Article  CAS  Google Scholar 

  169. Lei, Z.C., Feng, W.M., Feng, C.H., et al.: Nitrified coke wastewater sludge flocs: an attractive precursor for N, S dual-doped graphene-like carbon with ultrahigh capacitance and oxygen reduction performance. J. Mater. Chem. A 5, 2012–2020 (2017). https://doi.org/10.1039/c6ta09887h

    Article  CAS  Google Scholar 

  170. Zhang, L.P., Xia, Z.H.: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115, 11170–11176 (2011). https://doi.org/10.1021/jp201991j

    Article  CAS  Google Scholar 

  171. Wang, S., Zhang, L., Xia, Z., et al.: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 51, 4209–4212 (2012). https://doi.org/10.1002/anie.201109257

    Article  CAS  Google Scholar 

  172. Shen, H.J., Gracia-Espino, E., Ma, J.Y., et al.: Atomically FeN2 moieties dispersed on mesoporous carbon: a new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy 35, 9–16 (2017). https://doi.org/10.1016/j.nanoen.2017.03.027

    Article  CAS  Google Scholar 

  173. Liu, L.Y., Su, H., Tang, F.M., et al.: Confined organometallic Au1Nx single-site as an efficient bifunctional oxygen electrocatalyst. Nano Energy 46, 110–116 (2018). https://doi.org/10.1016/j.nanoen.2018.01.044

    Article  CAS  Google Scholar 

  174. Kou, Z.K., Zang, W.J., Ma, Y.Y., et al.: Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: from isolated atoms to clusters and nanoparticles. Nano Energy 67, 104288 (2020). https://doi.org/10.1016/j.nanoen.2019.104288

    Article  CAS  Google Scholar 

  175. Zhang, Z.Q., Chen, Y.G., Zhou, L.Q., et al.: The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 10, 1675 (2019). https://doi.org/10.1038/s41467-019-09596-x

    Article  CAS  Google Scholar 

  176. Chen, W.X., Pei, J.J., He, C.T., et al.: Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed. 56, 16086–16090 (2017). https://doi.org/10.1002/anie.201710599

    Article  CAS  Google Scholar 

  177. Wen, X.D., Duan, Z.Y., Bai, L., et al.: Atomic scandium and nitrogen-codoped graphene for oxygen reduction reaction. J. Power Sources 431, 265–273 (2019). https://doi.org/10.1016/j.jpowsour.2019.126650

    Article  CAS  Google Scholar 

  178. Wang, X.Q., Chen, Z., Zhao, X.Y., et al.: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018). https://doi.org/10.1002/anie.201712451

    Article  CAS  Google Scholar 

  179. Li, X.G., Bi, W.T., Chen, M.L., et al.: Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139, 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074

    Article  CAS  PubMed  Google Scholar 

  180. Wei, S.J., Li, A., Liu, J.C., et al.: Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018). https://doi.org/10.1038/s41565-018-0197-9

    Article  CAS  PubMed  Google Scholar 

  181. Zhu, C.Z., Shi, Q.R., Xu, B.Z., et al.: Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 8, 1801956 (2018). https://doi.org/10.1002/aenm.201801956

    Article  CAS  Google Scholar 

  182. Wang, X.X., Cullen, D.A., Pan, Y.T., et al.: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758

    Article  CAS  Google Scholar 

  183. Miao, Z.P., Wang, X.M., Tsai, M.C., et al.: Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv. Energy Mater. 8, 1801226 (2018). https://doi.org/10.1002/aenm.201801226

    Article  CAS  Google Scholar 

  184. Zhou, S.Q., Shang, L., Zhao, Y.X., et al.: Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, 1900509 (2019). https://doi.org/10.1002/adma.201900509

    Article  CAS  Google Scholar 

  185. Xiao, M.L., Zhu, J.B., Li, G.R., et al.: A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58, 9640–9645 (2019). https://doi.org/10.1002/anie.201905241

    Article  CAS  Google Scholar 

  186. Yang, Q.H., Yang, C.C., Lin, C.H., et al.: Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem. Int. Ed. 58, 3511–3515 (2019). https://doi.org/10.1002/anie.201813494

    Article  CAS  Google Scholar 

  187. Yang, H.B., Hung, S.F., Liu, S., et al.: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8

    Article  CAS  Google Scholar 

  188. He, Y.H., Hwang, S., Cullen, D.A., et al.: Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019). https://doi.org/10.1039/c8ee02694g

    Article  CAS  Google Scholar 

  189. Yang, Z., Yuan, C.Z., Xu, A.W.: Confined pyrolysis within a nanochannel to form a highly efficient single iron site catalyst for Zn-air batteries. ACS Energy Lett. 3, 2383–2389 (2018). https://doi.org/10.1021/acsenergylett.8b01508

    Article  CAS  Google Scholar 

  190. Pan, Y., Lin, R., Chen, Y.J., et al.: Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814

    Article  CAS  PubMed  Google Scholar 

  191. Lin, Y.C., Liu, P.Y., Velasco, E., et al.: Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 31, 1808193 (2019). https://doi.org/10.1002/adma.201808193

    Article  CAS  Google Scholar 

  192. Chen, Z.G., Gong, W.B., Liu, Z.B., et al.: Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 60, 394–403 (2019). https://doi.org/10.1016/j.nanoen.2019.03.045

    Article  CAS  Google Scholar 

  193. Yang, J.Q., Zhou, X.L., Wu, D.H., et al.: S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 29, 1604108 (2017). https://doi.org/10.1002/adma.201604108

    Article  CAS  Google Scholar 

  194. Jiang, R., Li, L., Sheng, T., et al.: Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294

    Article  CAS  PubMed  Google Scholar 

  195. Wang, Y.C., Lai, Y.J., Song, L., et al.: S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem. Int. Ed. 54, 9907–9910 (2015). https://doi.org/10.1002/anie.201503159

    Article  CAS  Google Scholar 

  196. Qu, K.G., Zheng, Y., Dai, S., et al.: Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19, 373–381 (2016). https://doi.org/10.1016/j.nanoen.2015.11.027

    Article  CAS  Google Scholar 

  197. Chen, X.Q., Yu, L., Wang, S.H., et al.: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 32, 353–358 (2017). https://doi.org/10.1016/j.nanoen.2016.12.056

    Article  CAS  Google Scholar 

  198. Li, Q.H., Chen, W.X., Xiao, H., et al.: Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30, 1800588 (2018). https://doi.org/10.1002/adma.201800588

    Article  CAS  Google Scholar 

  199. Zhang, J.T., Zhang, M., Zeng, Y., et al.: Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 15, 1900307 (2019). https://doi.org/10.1002/smll.201900307

    Article  CAS  Google Scholar 

  200. Choi, C.H., Kim, M., Kwon, H.C., et al.: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kwon, H.C., Kim, M., Grote, J.P., et al.: Carbon monoxide as a promoter of atomically dispersed platinum catalyst in electrochemical hydrogen evolution reaction. J. Am. Chem. Soc. 140, 16198–16205 (2018). https://doi.org/10.1021/jacs.8b09211

    Article  CAS  PubMed  Google Scholar 

  202. Chen, P.Z., Zhou, T.P., Xing, L.L., et al.: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017). https://doi.org/10.1002/anie.201610119

    Article  CAS  Google Scholar 

  203. Shang, H.S., Zhou, X.Y., Dong, J.C., et al.: Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 11, 3049 (2020). https://doi.org/10.1038/s41467-020-16848-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mun, Y., Lee, S., Kim, K., et al.: Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141, 6254–6262 (2019). https://doi.org/10.1021/jacs.8b13543

    Article  CAS  PubMed  Google Scholar 

  205. Hu, X.B., Wu, Y.T., Li, H.R., et al.: Adsorption and activation of O2 on nitrogen-doped carbon nanotubes. J. Phys. Chem. C 114, 9603–9607 (2010). https://doi.org/10.1021/jp1000013

    Article  CAS  Google Scholar 

  206. Wu, J.J., Rodrigues, M.T.F., Vajtai, R., et al.: Tuning the electrochemical reactivity of boron- and nitrogen-substituted graphene. Adv. Mater. 28, 6239–6246 (2016). https://doi.org/10.1002/adma.201506316

    Article  CAS  PubMed  Google Scholar 

  207. Yang, L.J., Jiang, S.J., Zhao, Y., et al.: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132–7135 (2011). https://doi.org/10.1002/anie.201101287

    Article  CAS  Google Scholar 

  208. Agnoli, S., Favaro, M.: Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A 4, 5002–5025 (2016). https://doi.org/10.1039/c5ta10599d

    Article  CAS  Google Scholar 

  209. Sun, H., Wang, M.F., Du, X.C., et al.: Modulating the d-band center of boron doped mingle-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 7, 20952–20957 (2019). https://doi.org/10.1039/c9ta06949f

    Article  CAS  Google Scholar 

  210. Zhu, Y., Zhang, Z.Y., Li, W.Q., et al.: Highly exposed active sites of defect-enriched derived MOFs for enhanced oxygen reduction reaction. ACS Sustain. Chem. Eng. 7, 17855–17862 (2019). https://doi.org/10.1021/acssuschemeng.9b04380

    Article  CAS  Google Scholar 

  211. Liu, L.C., Díaz, U., Arenal, R., et al.: Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017). https://doi.org/10.1038/nmat4757

    Article  CAS  PubMed  Google Scholar 

  212. Golafrooz Shahri, S., Roknabadi, M.R., Radfar, R.: Spin-dependent structural, electronic and transport properties of armchair graphyne nanoribbons doped with single transition-metal atom, using DFT calculations. J. Magn. Magn. Mater. 443, 96–103 (2017). https://doi.org/10.1016/j.jmmm.2017.07.039

    Article  CAS  Google Scholar 

  213. Chen, Y.J., Ji, S.F., Wang, Y.G., et al.: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017). https://doi.org/10.1002/anie.201702473

    Article  CAS  Google Scholar 

  214. Wang, J., Huang, Z.Q., Liu, W., et al.: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385

    Article  CAS  PubMed  Google Scholar 

  215. Chung, H.T., Cullen, D.A., Higgins, D., et al.: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017). https://doi.org/10.1126/science.aan2255

    Article  CAS  PubMed  Google Scholar 

  216. Qiu, H.J., Ito, Y., Cong, W.T., et al.: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015). https://doi.org/10.1002/anie.201507381

    Article  CAS  Google Scholar 

  217. Zhang, X.F., Guo, J.J., Guan, P.F., et al.: Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 4, 1924 (2013). https://doi.org/10.1038/ncomms2929

    Article  CAS  PubMed  Google Scholar 

  218. Huang, F., Deng, Y.C., Chen, Y.L., et al.: Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 140, 13142–13146 (2018). https://doi.org/10.1021/jacs.8b07476

    Article  CAS  PubMed  Google Scholar 

  219. Yan, Z.C., Xiao, J., Lai, W.H., et al.: Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries. Nat. Commun. 10, 4793 (2019). https://doi.org/10.1038/s41467-019-11600-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gong, Y.J., Fei, H.L., Zou, X.L., et al.: Boron- and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction. Chem. Mater. 27, 1181–1186 (2015). https://doi.org/10.1021/cm5037502

    Article  CAS  Google Scholar 

  221. Fei, H., Ye, R., Ye, G., et al.: Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 8, 10837–10843 (2014). https://doi.org/10.1021/nn504637y

    Article  CAS  PubMed  Google Scholar 

  222. Fu, X.G., Zamani, P., Choi, J.Y., et al.: In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells. Adv. Mater. 29, 1604456 (2017). https://doi.org/10.1002/adma.201604456

    Article  CAS  Google Scholar 

  223. Leonard, N.D., Wagner, S., Luo, F., et al.: Deconvolution of utilization, site density, and turnover frequency of Fe-nitrogen-carbon oxygen reduction reaction catalysts prepared with secondary N-precursors. ACS Catal. 8, 1640–1647 (2018). https://doi.org/10.1021/acscatal.7b02897

    Article  CAS  Google Scholar 

  224. Liu, Y.W., Li, Z., Yu, Q.Y., et al.: A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 141, 9305–9311 (2019). https://doi.org/10.1021/jacs.9b02936

    Article  CAS  PubMed  Google Scholar 

  225. Liu, S.H., Wang, Z.Y., Zhou, S., et al.: Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29, 1700874 (2017). https://doi.org/10.1002/adma.201700874

    Article  CAS  Google Scholar 

  226. Lee, S., Fan, C.Y., Wu, T.P., et al.: CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J. Am. Chem. Soc. 126, 5682–5683 (2004). https://doi.org/10.1021/ja049436v

    Article  CAS  PubMed  Google Scholar 

  227. Lei, Y., Mehmood, F., Lee, S., et al.: Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010). https://doi.org/10.1126/science.1185200

    Article  CAS  PubMed  Google Scholar 

  228. Li, Z.J., Wang, D.H., Wu, Y.E., et al.: Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 5, 673–689 (2018). https://doi.org/10.1093/nsr/nwy056

    Article  CAS  Google Scholar 

  229. Jin, R.C., Zeng, C.J., Zhou, M., et al.: Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016). https://doi.org/10.1021/acs.chemrev.5b00703

    Article  CAS  PubMed  Google Scholar 

  230. Liang, S.X., Hao, C., Shi, Y.T.: The power of single-atom catalysis. ChemCatChem 7, 2559–2567 (2015). https://doi.org/10.1002/cctc.201500363

    Article  CAS  Google Scholar 

  231. Moses-Debusk, M., Yoon, M., Allard, L.F., et al.: CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135, 12634–12645 (2013). https://doi.org/10.1021/ja401847c

    Article  CAS  PubMed  Google Scholar 

  232. Qiao, B.T., Liu, J.X., Wang, Y.G., et al.: Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5, 6249–6254 (2015). https://doi.org/10.1021/acscatal.5b01114

    Article  CAS  Google Scholar 

  233. Tang, Y., Asokan, C., Xu, M.J., et al.: Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 10, 4488 (2019). https://doi.org/10.1038/s41467-019-12461-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. DeRita, L., Resasco, J., Dai, S., et al.: Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019). https://doi.org/10.1038/s41563-019-0349-9

    Article  CAS  PubMed  Google Scholar 

  235. Deng, J., Li, H.B., Wang, S.H., et al.: Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 8, 14430 (2017). https://doi.org/10.1038/ncomms14430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kuang, P.Y., Wang, Y.R., Zhu, B.C., et al.: Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 33, 2008599 (2021). https://doi.org/10.1002/adma.202008599

    Article  CAS  Google Scholar 

  237. Jeong, H., Kwon, O., Kim, B.S., et al.: Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020). https://doi.org/10.1038/s41929-020-0427-z

    Article  CAS  Google Scholar 

  238. Liu, W., Zhang, H.X., Li, C.M., et al.: Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. J. Energy Chem. 47, 333–345 (2020). https://doi.org/10.1016/j.jechem.2020.02.020

    Article  Google Scholar 

  239. Li, J.Z., Chen, M.J., Cullen, D.A., et al.: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8

    Article  CAS  Google Scholar 

  240. Zhang, W.J., Jiang, P.P., Wang, Y., et al.: Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction. RSC Adv. 4, 51544–51547 (2014). https://doi.org/10.1039/c4ra09304f

    Article  CAS  Google Scholar 

  241. Kistler, J.D., Chotigkrai, N., Xu, P.H., et al.: A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem. Int. Ed. 53, 8904–8907 (2014). https://doi.org/10.1002/anie.201403353

    Article  CAS  Google Scholar 

  242. Lu, J., Aydin, C., Browning, N.D., et al.: Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012). https://doi.org/10.1002/anie.201107391

    Article  CAS  Google Scholar 

  243. Zhu, Y.Q., Cao, T., Cao, C.B., et al.: One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 8, 10004–10011 (2018). https://doi.org/10.1021/acscatal.8b02624

    Article  CAS  Google Scholar 

  244. Zhao, K., Nie, X.W., Wang, H.Z., et al.: Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11, 2455 (2020). https://doi.org/10.1038/s41467-020-16381-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Yang, Z.K., Wang, Y., Zhu, M.Z., et al.: Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 9, 2158–2163 (2019). https://doi.org/10.1021/acscatal.8b04381

    Article  CAS  Google Scholar 

  246. Yang, H.Z., Shang, L., Zhang, Q.H., et al.: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019). https://doi.org/10.1038/s41467-019-12510-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Yin, P.Q., Yao, T., Wu, Y.E., et al.: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802

    Article  CAS  Google Scholar 

  248. Lu, J., Fu, B., Kung, M.C., et al.: Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012). https://doi.org/10.1126/science.1212906

    Article  CAS  PubMed  Google Scholar 

  249. O’Neill, B.J., Jackson, D.H.K., Crisci, A.J., et al.: Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. Angew. Chem. Int. Ed. 52, 13808–13812 (2013). https://doi.org/10.1002/anie.201308245

    Article  CAS  Google Scholar 

  250. Lu, J., Elam, J.W., Stair, P.C.: Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 46, 1806–1815 (2013). https://doi.org/10.1021/ar300229c

    Article  CAS  PubMed  Google Scholar 

  251. Zhang, T., Fu, L.: Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem 4, 671–689 (2018). https://doi.org/10.1016/j.chempr.2017.12.006

    Article  CAS  Google Scholar 

  252. Zhao, J., Deng, Q., Bachmatiuk, A., et al.: Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 343, 1228–1232 (2014). https://doi.org/10.1126/science.1245273

    Article  CAS  PubMed  Google Scholar 

  253. Tavakkoli, M., Holmberg, N., Kronberg, R., et al.: Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 7, 3121–3130 (2017). https://doi.org/10.1021/acscatal.7b00199

    Article  CAS  Google Scholar 

  254. Jeon, I.Y., Zhang, S., Zhang, L.P., et al.: Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv. Mater. 25, 6138–6145 (2013). https://doi.org/10.1002/adma.201302753

    Article  CAS  PubMed  Google Scholar 

  255. Vajda, S., White, M.G.: Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015). https://doi.org/10.1021/acscatal.5b01816

    Article  CAS  Google Scholar 

  256. Yamazaki, K., Maehara, Y., Kitajima, R., et al.: High-density dispersion of single platinum atoms on graphene by plasma sputtering in N2 atmosphere. Appl. Phys. Express 11, 095101 (2018). https://doi.org/10.7567/apex.11.095101

    Article  CAS  Google Scholar 

  257. Wei, H.H., Huang, K., Wang, D., et al.: Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017). https://doi.org/10.1038/s41467-017-01521-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Zhong, H.X., Wang, J., Zhang, Q., et al.: In situ coupling FeM (M = Ni, Co) with nitrogen-doped porous carbon toward highly efficient trifunctional electrocatalyst for overall water splitting and rechargeable Zn-air battery. Adv. Sustain. Syst. 1, 1700020 (2017). https://doi.org/10.1002/adsu.201700020

    Article  CAS  Google Scholar 

  259. Meng, F.L., Zhong, H.X., Yan, J.M., et al.: Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries. Nano Res. 10, 4436–4447 (2017). https://doi.org/10.1007/s12274-016-1343-z

    Article  CAS  Google Scholar 

  260. Xiao, M.L., Zhang, H., Chen, Y.T., et al.: Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy 46, 396–403 (2018). https://doi.org/10.1016/j.nanoen.2018.02.025

    Article  CAS  Google Scholar 

  261. Greeley, J., Stephens, I.E.L., Bondarenko, A.S., et al.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). https://doi.org/10.1038/nchem.367

    Article  CAS  PubMed  Google Scholar 

  262. Calle-Vallejo, F., Martínez, J.I., García-Lastra, J.M., et al.: Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. Surf. Sci. 607, 47–53 (2013). https://doi.org/10.1016/j.susc.2012.08.005

    Article  CAS  Google Scholar 

  263. Tiwari, J.N., Nath, K., Kumar, S., et al.: Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity. Nat. Commun. 4, 2221 (2013). https://doi.org/10.1038/ncomms3221

    Article  CAS  PubMed  Google Scholar 

  264. Lu, Z.Y., Chen, G.X., Siahrostami, S., et al.: High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x

    Article  CAS  Google Scholar 

  265. Chiang, W.H., Iihara, Y., Li, W.T., et al.: Enhanced thermoelectric properties of boron-substituted single-walled carbon nanotube films. ACS Appl. Mater. Interfaces 11, 7235–7241 (2019). https://doi.org/10.1021/acsami.8b14616

    Article  CAS  PubMed  Google Scholar 

  266. Chen, S.C., Chen, Z.H., Siahrostami, S., et al.: Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 6, 311–317 (2018). https://doi.org/10.1021/acssuschemeng.7b02517

    Article  CAS  Google Scholar 

  267. Kulkarni, A., Siahrostami, S., Patel, A., et al.: Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488

    Article  CAS  PubMed  Google Scholar 

  268. Jung, E., Shin, H., Lee, B.H., et al.: Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020). https://doi.org/10.1038/s41563-019-0571-5

    Article  CAS  PubMed  Google Scholar 

  269. Liang, H.W., Wei, W., Wu, Z.S., et al.: Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002–16005 (2013). https://doi.org/10.1021/ja407552k

    Article  CAS  PubMed  Google Scholar 

  270. Peng, P., Shi, L., Huo, F., et al.: A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 5, eaaw2322 (2019). https://doi.org/10.1126/sciadv.aaw2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Pan, Y., Liu, S.J., Sun, K.A., et al.: A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem. Int. Ed. 57, 8614–8618 (2018). https://doi.org/10.1002/anie.201804349

    Article  CAS  Google Scholar 

  272. Yang, Z.K., Chen, B.X., Chen, W.X., et al.: Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10, 3734 (2019). https://doi.org/10.1038/s41467-019-11796-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Liu, S., Li, Z.D., Wang, C.L., et al.: Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 11, 938 (2020). https://doi.org/10.1038/s41467-020-14565-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Yang, W.X., Liu, X.J., Yue, X.Y., et al.: Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 137, 1436–1439 (2015). https://doi.org/10.1021/ja5129132

    Article  CAS  PubMed  Google Scholar 

  275. Ren, G., Lu, X., Li, Y., et al.: Porous core-shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 8, 4118–4125 (2016). https://doi.org/10.1021/acsami.5b11786

    Article  CAS  PubMed  Google Scholar 

  276. Lee, J.S., Park, G.S., Kim, S.T., et al.: A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew. Chem. Int. Ed. 52, 1026–1030 (2013). https://doi.org/10.1002/anie.201207193

    Article  CAS  Google Scholar 

  277. Jiang, W.J., Gu, L., Li, L., et al.: Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757

    Article  CAS  PubMed  Google Scholar 

  278. Jiang, K., Back, S., Akey, A.J., et al.: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019). https://doi.org/10.1038/s41467-019-11992-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Lee, Y.L., Kleis, J., Rossmeisl, J., et al.: Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011). https://doi.org/10.1039/c1ee02032c

    Article  CAS  Google Scholar 

  280. Deml, A.M., Stevanović, V., Muhich, C.L., et al.: Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics. Energy Environ. Sci. 7, 1996–2004 (2014). https://doi.org/10.1039/c3ee43874k

    Article  CAS  Google Scholar 

  281. Calle-Vallejo, F., Loffreda, D., Koper, M.T.M., et al.: Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015). https://doi.org/10.1038/nchem.2226

    Article  CAS  PubMed  Google Scholar 

  282. Calle-Vallejo, F., Tymoczko, J., Colic, V., et al.: Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015). https://doi.org/10.1126/science.aab3501

    Article  CAS  PubMed  Google Scholar 

  283. Calle-Vallejo, F., Martínez, J.I., García-Lastra, J.M., et al.: Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53, 8316–8319 (2014). https://doi.org/10.1002/anie.201402958

    Article  CAS  Google Scholar 

  284. Wang, P.Y., Zhu, J.W., Pu, Z.H., et al.: Interfacial engineering of Co nanoparticles/Co2C nanowires boosts overall water splitting kinetics. Appl. Catal. B: Environ. 296, 120334 (2021). https://doi.org/10.1016/j.apcatb.2021.120334

    Article  CAS  Google Scholar 

  285. Stoerzinger, K.A., Rao, R.R., Wang, X.R., et al.: The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2, 668–675 (2017). https://doi.org/10.1016/j.chempr.2017.04.001

    Article  CAS  Google Scholar 

  286. Chang, S.H., Connell, J.G., Danilovic, N., et al.: Activity-stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 176, 125–133 (2014). https://doi.org/10.1039/c4fd00134f

    Article  CAS  PubMed  Google Scholar 

  287. Roy, C., Rao, R.R., Stoerzinger, K.A., et al.: Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces. ACS Energy Lett. 3, 2045–2051 (2018). https://doi.org/10.1021/acsenergylett.8b01178

    Article  CAS  Google Scholar 

  288. Danilovic, N., Subbaraman, R., Chang, K.C., et al.: Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014). https://doi.org/10.1021/jz501061n

    Article  CAS  PubMed  Google Scholar 

  289. Fabbri, E., Habereder, A., Waltar, K., et al.: Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800–3821 (2014). https://doi.org/10.1039/c4cy00669k

    Article  CAS  Google Scholar 

  290. Paoli, E.A., Masini, F., Frydendal, R., et al.: Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci. 6, 190–196 (2015). https://doi.org/10.1039/c4sc02685c

    Article  CAS  PubMed  Google Scholar 

  291. Rong, X., Parolin, J., Kolpak, A.M.: A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6, 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432

    Article  CAS  Google Scholar 

  292. Wohlfahrt-Mehrens, M., Heitbaum, J.: Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 237, 251–260 (1987). https://doi.org/10.1016/0022-0728(87)85237-3

    Article  CAS  Google Scholar 

  293. Strasser, P.: Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)-oxygen evolution (OER) cycle using core-shell nanoelectrocatalysts. Acc. Chem. Res. 49, 2658–2668 (2016). https://doi.org/10.1021/acs.accounts.6b00346

    Article  CAS  PubMed  Google Scholar 

  294. Cherevko, S., Zeradjanin, A.R., Topalov, A.A., et al.: Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014). https://doi.org/10.1002/cctc.201402194

    Article  CAS  Google Scholar 

  295. Grimaud, A., Diaz-Morales, O., Han, B.H., et al.: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017). https://doi.org/10.1038/nchem.2695

    Article  CAS  PubMed  Google Scholar 

  296. He, Z.Y., Dong, B.Q., Wang, W.L., et al.: Elucidating interaction between palladium and N-doped carbon nanotubes: effect of electronic property on activity for nitrobenzene hydrogenation. ACS Catal. 9, 2893–2901 (2019). https://doi.org/10.1021/acscatal.8b03965

    Article  CAS  Google Scholar 

  297. Sultan, S., Tiwari, J.N., Singh, A.N., et al.: Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 9, 1900624 (2019). https://doi.org/10.1002/aenm.201900624

    Article  CAS  Google Scholar 

  298. Tiwari, J.N., Singh, A.N., Sultan, S., et al.: Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Adv. Energy Mater. 10, 2000280 (2020). https://doi.org/10.1002/aenm.202000280

    Article  CAS  Google Scholar 

  299. Li, J.Q., Zhong, L.X., Tong, L.M., et al.: Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater. 29, 1905423 (2019). https://doi.org/10.1002/adfm.201905423

    Article  CAS  Google Scholar 

  300. Cheng, W.R., Zhao, X., Su, H., et al.: Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8

    Article  CAS  Google Scholar 

  301. Yao, Y.G., Huang, Z.N., Xie, P.F., et al.: High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019). https://doi.org/10.1038/s41565-019-0518-7

    Article  CAS  PubMed  Google Scholar 

  302. Jiao, Y., Zheng, Y., Jaroniec, M., et al.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/c4cs00470a

    Article  CAS  PubMed  Google Scholar 

  303. Reier, T., Pawolek, Z., Cherevko, S., et al.: Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137, 13031–13040 (2015). https://doi.org/10.1021/jacs.5b07788

    Article  CAS  PubMed  Google Scholar 

  304. Stamenkovic, V.R., Mun, B.S., Arenz, M., et al.: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007). https://doi.org/10.1038/nmat1840

    Article  CAS  PubMed  Google Scholar 

  305. Luo, M.C., Guo, S.J.: Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59

    Article  CAS  Google Scholar 

  306. Stephens, I.E.L., Bondarenko, A.S., Perez-Alonso, F.J., et al.: Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–5491 (2011). https://doi.org/10.1021/ja111690g

    Article  CAS  PubMed  Google Scholar 

  307. Calle-Vallejo, F., Koper, M.T.M., Bandarenka, A.S.: Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem. Soc. Rev. 42, 5210–5230 (2013). https://doi.org/10.1039/c3cs60026b

    Article  CAS  PubMed  Google Scholar 

  308. Kou, Z.K., Wang, T.T., Gu, Q.L., et al.: Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 9, 1803768 (2019). https://doi.org/10.1002/aenm.201803768

    Article  CAS  Google Scholar 

  309. Zhang, H., Li, W.Q., Feng, X., et al.: Interfacial FeOOH/CoO nanowires array improves electrocatalytic water splitting. J. Solid State Chem. 298, 122156 (2021). https://doi.org/10.1016/j.jssc.2021.122156

    Article  CAS  Google Scholar 

  310. Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012). https://doi.org/10.1039/c2ra20839c

    Article  CAS  Google Scholar 

  311. Papageorgopoulos, D.C., Keijzer, M., Veldhuis, J.B.J., et al.: CO tolerance of Pd-rich platinum palladium carbon-supported electrocatalysts. J. Electrochem. Soc. 149, A1400–A1404 (2002). https://doi.org/10.1149/1.1510131

    Article  CAS  Google Scholar 

  312. Subbaraman, R., Tripkovic, D., Strmcnik, D., et al.: Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011). https://doi.org/10.1126/science.1211934

    Article  CAS  PubMed  Google Scholar 

  313. Danilovic, N., Subbaraman, R., Strmcnik, D., et al.: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012). https://doi.org/10.1002/anie.201204842

    Article  CAS  Google Scholar 

  314. Strmcnik, D., Uchimura, M., Wang, C., et al.: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013). https://doi.org/10.1038/nchem.1574

    Article  CAS  PubMed  Google Scholar 

  315. Zhao, Z.P., Liu, H.T., Gao, W.P., et al.: Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 140, 9046–9050 (2018). https://doi.org/10.1021/jacs.8b04770

    Article  CAS  PubMed  Google Scholar 

  316. Yin, H.J., Zhao, S.L., Zhao, K., et al.: Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms7430

    Article  CAS  Google Scholar 

  317. Peng, Y., Lu, B.Z., Chen, L.M., et al.: Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets. J. Mater. Chem. A 5, 18261–18269 (2017). https://doi.org/10.1039/c7ta03826g

    Article  CAS  Google Scholar 

  318. Jiang, K., Liu, B., Luo, M., et al.: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat Commun 10, 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Yang, J., Mohmad, A.R., Wang, Y., et al.: Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8

    Article  CAS  PubMed  Google Scholar 

  320. Deng, D.H., Novoselov, K.S., Fu, Q., et al.: Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340

    Article  CAS  PubMed  Google Scholar 

  321. Tiwari, J.N., Sultan, S., Myung, C.W., et al.: Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 3, 773–782 (2018). https://doi.org/10.1038/s41560-018-0209-x

    Article  CAS  Google Scholar 

  322. Ha, M.R., Kim, D.Y., Umer, M., et al.: Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ. Sci. 14, 3455–3468 (2021). https://doi.org/10.1039/d1ee00154j

    Article  CAS  Google Scholar 

  323. Tiwari, J.N., Harzandi, A.M., Ha, M.R., et al.: Hydrogen evolution: high-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Adv. Energy Mater. 9, 1970101 (2019). https://doi.org/10.1002/aenm.201970101

    Article  CAS  Google Scholar 

  324. Tiwari, J.N., Dang, N.K., Sultan, S., et al.: Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat. Sustain. 3, 556–563 (2020). https://doi.org/10.1038/s41893-020-0509-6

    Article  Google Scholar 

  325. Harzandi, A.M., Shadman, S., Ha, M.R., et al.: Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Appl. Catal. B: Environ. 270, 118896 (2020). https://doi.org/10.1016/j.apcatb.2020.118896

    Article  CAS  Google Scholar 

  326. Lai, W.H., Zhang, L.F., Hua, W.B., et al.: General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem. Int. Ed. 131, 11994–11999 (2019). https://doi.org/10.1002/ange.201904614

    Article  Google Scholar 

  327. Hossain, M.D., Liu, Z.J., Zhuang, M.H., et al.: Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9, 1803689 (2019). https://doi.org/10.1002/aenm.201803689

    Article  CAS  Google Scholar 

  328. Cao, L.L., Luo, Q.Q., Liu, W., et al.: Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019). https://doi.org/10.1038/s41929-018-0203-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 21771030) and the Natural Science Foundation of Liaoning Province (2020-MS-113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifu Zhang or Zongkui Kou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Wang, T., Zhang, J. et al. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochem. Energy Rev. 5, 145–186 (2022). https://doi.org/10.1007/s41918-021-00124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00124-4

Keywords

Navigation