Skip to main content
Log in

Lights and the Invisibles: towards a regional/sector-wise policy approach exploring India’s economy–environment trade-offs

  • Article
  • Published:
Asia-Pacific Journal of Regional Science Aims and scope Submit manuscript

Abstract

Air pollution mitigation strategies are either global or national. In this study, we highlight the need for regional/sector-wise mitigation strategies. We first explored the relationship between economic activity (measured using Nighttime Lights) and air quality for India (and Norway as a comparative reference) employing the Environmental Kuznets Curve (EKC). Second, we focused on the need to shift from global/national-level air pollution mitigation policies to geoclimatic region-wise policy implementation in developing nations with significant economic and physical geography heterogeneity. We considered regional/sector-wise differences in the economic activity–air quality relationship, thereby aiding future policy action in these regions/sectors. We used a panel econometric research design on geospatial variables extracted from the Google Earth Engine. We investigated causality using an Instrument Variable strategy. Economic activity in Norway led to improved air quality, while India is still far from an inverted U-shaped EKC. An inverted U-shaped EKC existed for BIMARU (Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh) states after accounting for transboundary pollution. Transport and industrial sectors were significant contributors to air pollution in India, with Nitrogen Dioxide concentrations highest in the Central, Western, and Eastern regions. At the same time, West India was no longer a Sulfur Dioxide polluting hub. Export hubs were sources of Nitrogen Dioxide pollution, while the primary, secondary, and tertiary sectors were characterized by Carbon Monoxide and Sulfur Dioxide emissions. Given the geographical heterogeneities, global/national intervention policies may not solve the underlying problem anymore. Alternatively, shifting to a decentralized approach involving source-level interventions is the need of the hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

Notes

  1. From “Air Pollution”, World Health Organization; “Ambient (Outdoor) Air Pollution”, December 2022, World Health Organization.

  2. From “Air”, United Nations Environment Program.

  3. From “Inhale death: Editorial on worsening air quality in India” 25 April 2023, The Telegraph, “https://www.telegraphindia.com/opinion/inhale-death-editorial-on-worsening-air-quality-in-india/cid/1923921”.

  4. 2022 Air Quality Report, by Swiss firm IQAir.

  5. From “World Economic Outlook: A Rocky Recovery”, April 2023, International Monetary Fund.

  6. Saurabh Sharma, "These are the 5 most industrialised states in India", October 2016, Business Today.

  7. Press Information Bureau, “Top Export Districts in the Country”, December 2021, Ministry of Commerce and Industry, “https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1780245”.

  8. North India consists of Chandigarh, Haryana, Himachal Pradesh, Jammu and Kashmir, Punjab, Rajasthan, and Uttarakhand. Chhattisgarh, Madhya Pradesh, and Uttar Pradesh belong to Central India. For the region, East, Bihar, Jharkhand, Odisha, and West Bengal are taken. Whereas, in North-eastern zone Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, and Tripura are categorized. Dadra and Nagar Haveli, Daman and Diu, and Gujarat and Maharashtra referred to West. In South division Andaman and Nicobar Island, Andhra Pradesh, Karnataka, Kerala, and Tamil Nadu are the parts of South division.

  9. QGIS is an open-source geographical information system software for geospatial data.

  10. Saurabh Sharma, "These are the 5 most industrialised states in India", October 2016, Business Today.

  11. These states are Tamil Nadu, Maharashtra, Gujarat, Uttar Pradesh, and Andhra Pradesh.

  12. Press Information Bureau, “Top Export Districts in the Country”, December 2021, Ministry of Commerce and Industry, “https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1780245”.

  13. Google COVID-19 Community Mobility Reports.

  14. SHRUG (Covid-19 Data Resources, 2020/2022).

  15. COVID_19 data Norway, “https://www.covid19data.no/”.

  16. Dipu Rai, “Why instances of stubble burning haunt Delhi-NCR”, India Today, September 2022, “https://www.indiatoday.in/diu/story/stubble-burning-delhi-ncr-punjab-haryana-2006315-2022-09-29”.

Abbreviations

2SLS:

Two-Stage Least Squares

AOD:

Aerosol Optical Depth

AQI:

Air Quality Index

BC:

Black Carbon

BIMARU:

Bihar, Madhya Pradesh, Rajasthan, Uttar Pradesh

CO:

Carbon Monoxide

CO2 :

Carbon Dioxide

CPCB:

Central Pollution Control Board

DMSP:

Defence Meteorological Satellite Program

EKC:

Environmental Kuznets Curve

EPZ:

Export Processing Zones

FDI:

Foreign Direct Investment

GADM:

Database of Global Administrative Areas

GDP:

Gross Domestic Product

GEE:

Google Earth Engine

GHGs:

Greenhouse Gases

IMD:

Indian Meteorological Department

IMF:

International Monetary Fund

IV:

Instrument Variable

LCCP:

Low-Carbon City Pilot Policy

LISA:

Local Indicator of Spatial Association

LM:

Lagrange Multiplier

MSIS:

Norwegian Surveillance System for Communicable Diseases

NAFTA:

North American Free Trade Agreement

NCAP:

National Clean Air Program

NO2 :

Nitrogen Dioxide

OECD:

Organisation for Economic Co-operation and Development

PM:

Particulate Matter

PM1 :

Particulate Matter (1 µm diameter)

PM2.5 :

Particulate Matter (2.5 µm diameter)

PM10 :

Particulate Matter (10 µm diameter)

QML:

Quasi Maximum Likelihood

SAR:

Spatial Autoregressive Model

SHRUG:

Socioeconomic High-resolution Rural–Urban Geographic Data Platform for India

SO2 :

Sulfur Dioxide

VIIRS:

Visible Infrared Imaging Radiometer Suite

WHO:

World Health Organization

References

  • Abbasi MA, Nosheen M, Rahman HU (2023) An approach to the pollution haven and pollution halo hypotheses in Asian countries. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-25548-x

    Article  Google Scholar 

  • Abdurrahman MI, Chaki S, Saini G (2020) Stubble burning: effects on health & environment, regulations and management practices. Environ Adv 2:100011

    Article  Google Scholar 

  • Akbostancı E, Türüt-Aşık S, Tunç Gİ (2009) The relationship between income and environment in Turkey: is there an environmental Kuznets curve? Energy Policy 37(3):861–867

    Article  Google Scholar 

  • Ali M, Siddique I, Abbas S (2022) Characterizing air pollution and its association with emission sources in Lahore: a guide to adaptation action plans to control pollution and smog. Appl Sci 12(10):5102

    Article  CAS  Google Scholar 

  • Alola AA, Ozturk I (2021) Mirroring risk to investment within the EKC hypothesis in the United States. J Environ Manag 293:112890

    Article  Google Scholar 

  • Alsamara M, Mrabet Z, Saleh AS, Anwar S (2018) The environmental Kuznets curve relationship: a case study of the Gulf Cooperation Council region. Environ Sci Pollut Res 25(33):33183–33195. https://doi.org/10.1007/s11356-018-3161-1

    Article  CAS  Google Scholar 

  • Aminata J, Nugroho SBM, Atmanti HD, Agustin ESAS, Wibowo A, Smida A (2022) Economic growth, population, and policy strategies: its effecton CO2 emissions. Int J Energy Econ Policy 12(4):67–71. https://doi.org/10.32479/ijeep.13125

    Article  Google Scholar 

  • Apergis N, Ozturk I (2015) Testing environmental Kuznets curve hypothesis in Asian countries. Ecol Ind 52:16–22

    Article  Google Scholar 

  • Asher S, Lunt T, Matsuura R, Novosad P (2019) The socioeconomic high-resolution rural-urban geographic dataset on India (SHRUG). 10.7910/DVN/DPESAK. http://shrug-assets.s3.amazonaws.com/static/main/assets/other/almn-shrug.pdf

  • Aslan A, Destek MA, Okumus I (2018) Bootstrap rolling window estimation approach to analysis of the Environment Kuznets curve hypothesis: evidence from the USA. Environ Sci Pollut Res 25:2402–2408

    Article  Google Scholar 

  • Aslan A, Ocal O, Ozsolak B (2022) Testing the EKC hypothesis for the USA by avoiding aggregation bias: a microstudy by subsectors. Environ Sci Pollut Res 29(27):41684–41694. https://doi.org/10.1007/s11356-022-18897-6

    Article  Google Scholar 

  • Awan AM, Azam M (2022) Evaluating the impact of GDP per capita on environmental degradation for G-20 economies: does N-shaped environmental Kuznets curve exist? Environ Dev Sustain 24:11103–11126

    Article  Google Scholar 

  • Ayad H, Mishra P, Kumari B, Ray S, Nuţă FM, Gautam R, Balsalobre-Lorente D, Nuţă AC, Zamfir CG (2023) The spillover effects of uncertainty and globalization on environmental quality in India: evidence from combined cointegration test and augmented ARDL model. Front Environ Sci. https://doi.org/10.3389/fenvs.2023.1144201

    Article  Google Scholar 

  • Bai Y, Arabadzhyan A, Li Y (2022) The legacy of the Great Wall. J Econ Behav Organ 196:120–147

    Article  Google Scholar 

  • Bekun FV, Adedoyin FF, Balsalobre-Lorente D, Driha OM (2022) Designing policy framework for sustainable development in Next-5 largest economies amidst energy consumption and key macroeconomic indicators. Environ Sci Pollut Res 29(11):16653–16666. https://doi.org/10.1007/s11356-021-16820-z

    Article  Google Scholar 

  • Beyer RC, Franco-Bedoya S, Galdo V (2021) Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity. World Dev 140:105287

    Article  PubMed  Google Scholar 

  • Bluhm R, Krause M (2022) Top lights: bright cities and their contribution to economic development. J Dev Econ 157:102880

    Article  Google Scholar 

  • Bluhm R, Polonik P, Hemes KS, Sanford LC, Benz SA, Levy MC, Ricke KL, Burney JA (2022) Disparate air pollution reductions during California’s COVID-19 economic shutdown. Nat Sustain 5(6):509–517

    Article  Google Scholar 

  • Bonneau DD, Hall JC, Zhou Y (2022) Institutional implant and economic stagnation: a counterfactual study of Somalia. Public Choice 190:483–503

    Article  Google Scholar 

  • Brancher M (2021) Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna’s first COVID-19 lockdown: significance for air quality management. Environ Pollut 284:117153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broomandi P, Karaca F, Nikfal A, Jahanbakhshi A, Tamjidi M, Kim JR (2020) Impact of COVID-19 event on the air quality in Iran. Aerosol Air Qual Res 20(8):1793–1804. https://doi.org/10.4209/aaqr.2020.05.0205

    Article  CAS  Google Scholar 

  • Chanana I, Sharma A, Kumar P, Kumar L, Kulshreshtha S, Kumar S, Patel SKS (2023) Combustion and stubble burning: a major concern for the environment and human health. Fire 6(2):79

    Article  Google Scholar 

  • Clay K, Muller NZ, Wang X (2021) Recent increases in air pollution: evidence and implications for mortality. Rev Environ Econ Policy 15(1):154–162

    Article  Google Scholar 

  • Cole MA, Rayner AJ, Bates JM (1997) The environmental Kuznets curve: an empirical analysis. Environ Dev Econ 2(4):401–416

    Article  Google Scholar 

  • Coria J, Köhlin G, Xu J (2019) On the use of market-based instruments to reduce air pollution in Asia. Sustainability 11(18):4895

    Article  CAS  Google Scholar 

  • Cosmas NC, Chitedze I, Mourad KA (2019) An econometric analysis of the macroeconomic determinants of carbon dioxide emissions in Nigeria. Sci Total Environ 675:313–324

    Article  ADS  CAS  PubMed  Google Scholar 

  • Das M, Das A, Sarkar R, Saha S, Mandal P (2021) Regional scenario of air pollution in lockdown due to COVID-19 pandemic: evidence from major urban agglomerations of India. Urban Climate 37:100821

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis ME, Laden F, Hart JE, Garshick E, Smith TJ (2010) Economic activity and trends in ambient air pollution. Environ Health Perspect 118(5):614–619. https://doi.org/10.1289/ehp.0901145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell M, Jones BF, Olken BA (2014) What do we learn from the weather? The new climate-economy literature. J Econ Lit 52(3):740–798

    Article  Google Scholar 

  • Destek MA, Sarkodie SA (2019) Investigation of environmental Kuznets curve for ecological footprint: the role of energy and financial development. Sci Total Environ 650:2483–2489

    Article  ADS  CAS  PubMed  Google Scholar 

  • Destek MA, Sinha A (2020) Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: evidence from organisation for economic Co-operation and development countries. J Clean Prod 242:118537

    Article  Google Scholar 

  • Destek MA, Ulucak R, Dogan E (2018) Analyzing the environmental Kuznets curve for the EU countries: the role of ecological footprint. Environ Sci Pollut Res 25:29387–29396

    Article  Google Scholar 

  • Dinku Y, Regasa D (2021) Ethnic diversity and local economies. S Afr J Econ 89(3):348–367. https://doi.org/10.1111/saje.12286

    Article  Google Scholar 

  • Dogan E, Inglesi-Lotz R (2020) The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: evidence from European countries. Environ Sci Pollut Res 27:12717–12724

    Article  Google Scholar 

  • Dogan E, Ulucak R, Kocak E, Isik C (2020) The use of ecological footprint in estimating the environmental Kuznets curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138063

    Article  PubMed  Google Scholar 

  • Duc H, Salter D, Azzi M, Jiang N, Warren L, Watt S, Riley M, White S, Trieu T, Tzu-Chi Chang L (2021) The effect of lockdown period during the COVID-19 pandemic on air quality in Sydney region, Australia. Int J Environ Res Public Health 18(7):3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumitrescu C (2015) Environmental Kuznets curve. Evidence from Romania. Theor Appl Econ 22(602):85–96

    Google Scholar 

  • Elvidge CD, Hsu F-C, Baugh KE, Ghosh T (2014) National trends in satellite-observed lighting. Global Urban Monit Assess Earth Observ 23:97–118

    Google Scholar 

  • Ganguly T, Selvaraj KL, Guttikunda SK (2020) National Clean Air Programme (NCAP) for Indian cities: review and outlook of clean air action plans. Atmos Environ X 8:100096

    CAS  Google Scholar 

  • Gao C, Li S, Liu M, Zhang F, Achal V, Tu Y, Zhang S, Cai C (2021) Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. Sci Total Environ 773:145545

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S (2018) Comments on the National Clean Air Programme The National Clean Air Programme (NCAP) India released by the Ministry of Environment

  • Gibson J, Olivia S, Boe-Gibson G (2020) Night lights in economics: sources and uses 1. J Econ Surv 34(5):955–980

    Article  Google Scholar 

  • Gopakumar G, Jaiswal R, Parashar M (2022) Analysis of the existence of environmental Kuznets curve: evidence from India. Int J Energy Econ Policy 12(1):177–187. https://doi.org/10.32479/ijeep.11964

    Article  Google Scholar 

  • Grossman GM, Krueger AB (1991) Environmental impacts of a North American free trade agreement. National Bureau of Economic Research, Cambridge, MA

    Book  Google Scholar 

  • Gualtieri G, Brilli L, Carotenuto F, Vagnoli C, Zaldei A, Gioli B (2020) Quantifying road traffic impact on air quality in urban areas: a Covid19-induced lockdown analysis in Italy. Environ Pollut 267:115682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurjar BR, Nagpure AS (2019) Indian megacities as localities of environmental vulnerability from air quality perspective. J Smart Cities 1(1):15–30

    Google Scholar 

  • Gurjar BR, Ravindra K, Nagpure AS (2016) Air pollution trends over Indian megacities and their local-to-global implications. Atmos Environ 142:475–495

    Article  ADS  CAS  Google Scholar 

  • Guttikunda S, Ka N, Ganguly T, Jawahar P (2023) Plugging the ambient air monitoring gaps in India’s National Clean Air Programme (NCAP) airsheds. Atmos Environ 301:119712

    Article  CAS  Google Scholar 

  • He J, Richard P (2010) Environmental Kuznets curve for CO2 in Canada. Ecol Econ 69(5):1083–1093

    Article  Google Scholar 

  • Hester RE, Harrison RM (eds) (2009) Air quality in urban environments, vol 28. Royal Society of Chemistry, London

    Google Scholar 

  • Hossain MR, Rej S, Awan A, Bandyopadhyay A, Islam MS, Das N, Hossain ME (2023) Natural resource dependency and environmental sustainability under N-shaped EKC: the curious case of India. Resour Policy. https://doi.org/10.1016/j.resourpol.2022.103150

    Article  Google Scholar 

  • Htike MM, Shrestha A, Kakinaka M (2022) Investigating whether the environmental Kuznets curve hypothesis holds for sectoral CO2 emissions: evidence from developed and developing countries. Environ Dev Sustain 24(11):12712–12739. https://doi.org/10.1007/s10668-021-01961-5

    Article  PubMed  Google Scholar 

  • Hussain I, Ahmad E, Majeed MT (2023) Curvature and turning point of the environmental Kuznets curve in a global economy: the role of governance. Environ Sci Pollut Res 30:53007–53019

    Article  Google Scholar 

  • Işık C, Ongan S, Özdemir D (2019) Testing the EKC hypothesis for ten US states: An application of heterogeneous panel estimation method. Environ Sci Pollut Res 26:10846–10853

    Article  Google Scholar 

  • Isik C, Ongan S, Ozdemir D, Ahmad M, Irfan M, Alvarado R, Ongan A (2021) The increases and decreases of the environment Kuznets curve (EKC) for 8 OECD countries. Environ Sci Pollut Res 28:28535–28543

    Article  Google Scholar 

  • Jahanger A, Chishti MZ, Onwe JC, Awan A (2022a) How far renewable energy and globalization are useful to mitigate the environment in Mexico? Application of QARDL and spectral causality analysis. Renew Energy 201:514–525

    Article  CAS  Google Scholar 

  • Jahanger A, Yu Y, Hossain MR, Murshed M, Balsalobre-Lorente D, Khan U (2022b) Going away or going green in NAFTA nations? Linking natural resources, energy utilization, and environmental sustainability through the lens of the EKC hypothesis. Resour Policy 79:103091

    Article  Google Scholar 

  • Jahanger A, Hossain MR, Onwe JC, Ogwu SO, Awan A, Balsalobre-Lorente D (2023a) Analyzing the N-shaped EKC among top nuclear energy generating nations: a novel dynamic common correlated effects approach. Gondwana Res 116:73–88

    Article  ADS  Google Scholar 

  • Jahanger A, Ozturk I, Onwe JC, Joseph TE, Hossain MR (2023b) Do technology and renewable energy contribute to energy efficiency and carbon neutrality? Evidence from top ten manufacturing countries. Sustain Energy Technol Assess 56:103084

    Google Scholar 

  • Jahanger A, Zaman U, Hossain MR, Awan A (2023c) Articulating CO2 emissions limiting roles of nuclear energy and ICT under the EKC hypothesis: an application of non-parametric MMQR approach. Geosci Front 14(5):101589

    Article  CAS  Google Scholar 

  • Jain A, Bhatnagar V (2018) Hashtag# perspicacity of India Region using scalable big data infrastructure using Hadoop environment. In: Dey N, Babo R, Ashour AS, Bhatnagar V, Bouhlel MS (eds) Social networks science: design, implementation, security, and challenges. Springer International Publishing, Berlin, pp 67–85. https://doi.org/10.1007/978-3-319-90059-9_4

    Chapter  Google Scholar 

  • Kar AK (2022) Environmental Kuznets curve for CO2 emissions in Baltic countries: an empirical investigation. Environmental Sci Pollut Res 29(31):47189–47208. https://doi.org/10.1007/s11356-022-19103-3

    Article  CAS  Google Scholar 

  • Kasman A, Duman YS (2015) CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. Econ Model 44:97–103

    Article  Google Scholar 

  • Kaufmann RK, Davidsdottir B, Garnham S, Pauly P (1998) The determinants of atmospheric SO2 concentrations: reconsidering the environmental Kuznets curve. Ecol Econ 25(2):209–220. https://doi.org/10.1016/S0921-8009(97)00181-X

    Article  Google Scholar 

  • Kaya Kanlı N, Küçükefe B (2023) Is the environmental Kuznets curve hypothesis valid? A global analysis for carbon dioxide emissions. Environ Dev Sustain 25(3):2339–2367

    Article  Google Scholar 

  • Kazemi A, Laurin N (2023) A test of the environmental Kuznets curve in the Nordic countries. https://gupea.ub.gu.se/handle/2077/74825

  • Kerimray A, Baimatova N, Ibragimova OP, Bukenov B, Kenessov B, Plotitsyn P, Karaca F (2020) Assessing air quality changes in large cities during COVID-19 lockdowns: the impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci Total Environ 730:139179

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Yahong W, Zeeshan A (2022) Impact of poverty and income inequality on the ecological footprint in Asian developing economies: assessment of sustainable development goals. Energy Rep 8:670–679

    Article  Google Scholar 

  • Koc S, Bulus GC (2020) Testing validity of the EKC hypothesis in South Korea: role of renewable energy and trade openness. Environ Sci Pollut Res 27(23):29043–29054

    Article  CAS  Google Scholar 

  • Kumar P, Hama S, Omidvarborna H, Sharma A, Sahani J, Abhijith KV, Debele SE, Zavala-Reyes JC, Barwise Y, Tiwari A (2020) Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustain Cities Soc 62:102382

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanzi E, Dellink R, Chateau J (2018) The sectoral and regional economic consequences of outdoor air pollution to 2060. Energy Econ 71:89–113

    Article  Google Scholar 

  • Leal PH, Marques AC (2020) Rediscovering the EKC hypothesis for the 20 highest CO2 emitters among OECD countries by level of globalization. Int Econ 164:36–47

    Article  Google Scholar 

  • Lee L, Yu J (2010) Some recent developments in spatial panel data models. Reg Sci Urban Econ 40(5):255–271

    Article  Google Scholar 

  • Leffel B, Tavasoli N, Liddle B, Henderson K, Kiernan S (2022) Metropolitan air pollution abatement and industrial growth: global urban panel analysis of PM10, PM2.5, NO2 and SO2. Environ Sociol 8(1):94–107. https://doi.org/10.1080/23251042.2021.1975349

    Article  Google Scholar 

  • Li J, Tartarini F (2020) Changes in air quality during the COVID-19 lockdown in Singapore and associations with human mobility trends. Aerosol Air Quality Res 20(8):1748–1758

    Article  CAS  Google Scholar 

  • Liddle B, Messinis G (2015) Revisiting sulfur Kuznets curves with endogenous breaks modeling: substantial evidence of inverted-Us/Vs for individual OECD countries. Econ Model 49:278–285

    Article  Google Scholar 

  • Liu Q, Wang S, Zhang W, Li J, Dong G (2019) The effect of natural and anthropogenic factors on PM2.5: empirical evidence from Chinese cities with different income levels. Sci Total Environ 653:157–167. https://doi.org/10.1016/j.scitotenv.2018.10.367

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mahato S, Ghosh KG (2020) Short-term exposure to ambient air quality of the most polluted Indian cities due to lockdown amid SARS-CoV-2. Environ Res 188:109835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maneejuk P, Yamaka W (2022) Revisiting the environmental Kuznets curve hypothesis in OECD during 1970–2016: Panel smooth transition regression. Energy Rep 8:41–47. https://doi.org/10.1016/j.egyr.2022.10.210

    Article  Google Scholar 

  • Marbuah G, Amuakwa-Mensah F (2017) Spatial analysis of emissions in Sweden. Energy Econ 68:383–394. https://doi.org/10.1016/j.eneco.2017.10.003

    Article  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban for Urban Green 4(3–4):115–123

    Article  Google Scholar 

  • Omri A, Daly S, Rault C, Chaibi A (2015) Financial development, environmental quality, trade and economic growth: what causes what in MENA countries. Energy Econ 48:242–252

    Article  Google Scholar 

  • Ouyang Z, Sciusco P, Jiao T, Feron S, Lei C, Li F, John R, Fan P, Li X, Williams CA (2022) Albedo changes caused by future urbanization contribute to global warming. Nat Commun 13(1):1–9

    Article  Google Scholar 

  • Pata UK (2018) Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: testing EKC hypothesis with structural breaks. J Clean Prod 187:770–779

    Article  Google Scholar 

  • Piccoli A, Agresti V, Balzarini A, Bedogni M, Bonanno R, Collino E, Colzi F, Lacavalla M, Lanzani G, Pirovano G (2020) Modeling the effect of COVID-19 lockdown on mobility and NO2 concentration in the Lombardy region. Atmosphere 11(12):1319

    Article  ADS  CAS  Google Scholar 

  • Pinkovskiy M, Sala-i-Martin X (2016) Lights, camera… income! Illuminating the national accounts-household surveys debate. Q J Econ 131(2):579–631

    Article  Google Scholar 

  • Qi G, Wei W, Wang Z, Wang Z, Wei L (2023) The spatial-temporal evolution mechanism of PM2.5 concentration based on China’s climate zoning. J Environ Manag. https://doi.org/10.1016/j.jenvman.2022.116671

    Article  Google Scholar 

  • Rana R, Sharma M (2019) Dynamic causality testing for EKC hypothesis, pollution haven hypothesis and international trade in India. J Int Trade Econ Dev 28(3):348–364

    Article  Google Scholar 

  • Rauf A, Liu X, Amin W, Ozturk I, Rehman OU, Hafeez M (2018) Testing EKC hypothesis with energy and sustainable development challenges: a fresh evidence from belt and road initiative economies. Environ Sci Pollut Res 25:32066–32080

    Article  CAS  Google Scholar 

  • Renzhi N, Baek YJ (2020) Can financial inclusion be an effective mitigation measure? Evidence from panel data analysis of the environmental Kuznets curve. Financ Res Lett 37:101725

    Article  Google Scholar 

  • Roy A, Chandra T, Ratho A (2020) Finding solutions to air pollution in India: the role of policy, finance, and communities. ORF: Observer Research Foundation

  • Salahuddin M, Alam K, Ozturk I, Sohag K (2018) The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew Sustain Energy Rev 81:2002–2010

    Article  Google Scholar 

  • Sarkodie SA, Strezov V (2018) Assessment of contribution of Australia’s energy production to CO2 emissions and environmental degradation using statistical dynamic approach. Sci Total Environ 639:888–899. https://doi.org/10.1016/j.scitotenv.2018.05.204

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shahbaz M, Mutascu M, Azim P (2013) Environmental Kuznets curve in Romania and the role of energy consumption. Renew Sustain Energy Rev 18:165–173

    Article  Google Scholar 

  • Shahbaz M, Sbia R, Hamdi H, Ozturk I (2014) Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates. Ecol Ind 45:622–631

    Article  CAS  Google Scholar 

  • Shahbaz M, Nasreen S, Abbas F, Anis O (2015) Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries? Energy Econ 51:275–287

    Article  Google Scholar 

  • Sinha A, Bhattacharya J (2017) Estimation of environmental Kuznets curve for SO2 emission: a case of Indian cities. Ecol Ind 72:881–894. https://doi.org/10.1016/j.ecolind.2016.09.018

    Article  CAS  Google Scholar 

  • Solarin SA, Al-mulali U, Sahu PK (2017) Globalisation and its effect on pollution in Malaysia: the role of Trans-Pacific Partnership (TPP) agreement. Environ Sci Pollut Res 24:23096–23113. https://doi.org/10.1007/s11356-017-9950-0

    Article  CAS  Google Scholar 

  • Sreenu N (2022) Impact of FDI, crude oil price and economic growth on CO2 emission in India: symmetric and asymmetric analysis through ARDL and non -linear ARDL approach. Environ Sci Pollut Res 29(28):42452–42465. https://doi.org/10.1007/s11356-022-19597-x

    Article  Google Scholar 

  • Steinkraus A (2017) Investigating the effect of carbon leakage on the environmental Kuznets curve using luminosity data. Environ Dev Econ 22(6):747–770. https://doi.org/10.1017/S1355770X17000249

    Article  Google Scholar 

  • Urban F, Nordensvärd J (2018) Low carbon energy transitions in the Nordic countries: evidence from the environmental kuznets curve. Energies. https://doi.org/10.3390/en11092209

    Article  Google Scholar 

  • Venter ZS, Aunan K, Chowdhury S, Lelieveld J (2020) COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci 117(32):18984–18990

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Bao Y, Wen Z, Tan Q (2016) Analysis of relationship between Beijing’s environment and development based on environmental Kuznets curve. Ecol Ind 67:474–483. https://doi.org/10.1016/j.ecolind.2016.02.045

    Article  CAS  Google Scholar 

  • Wang X, Tian G, Yang D, Zhang W, Lu D, Liu Z (2018) Responses of PM2.5 pollution to urbanization in China. Energy Policy 123:602–610. https://doi.org/10.1016/j.enpol.2018.09.001

    Article  CAS  Google Scholar 

  • Wasti SKA, Zaidi SW (2020) An empirical investigation between CO2 emission, energy consumption, trade liberalization and economic growth: a case of Kuwait. J Build Eng 28:101104

    Article  Google Scholar 

  • Wu J, Pu Y, Li J (2020) Air pollution, demographic structure, and the current account: an extended life-cycle model. Environ Sci Pollut Res 27(21):26350–26366

    Article  Google Scholar 

  • Yang S, Jahanger A, Hossain MR (2023a) Does China’s low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model. Energy Econ 121:106636

    Article  Google Scholar 

  • Yang S, Jahanger A, Hossain MR (2023b) How effective has the low-carbon city pilot policy been as an environmental intervention in curbing pollution? Evidence from Chinese industrial enterprises. Energy Econ 118:106523

    Article  Google Scholar 

  • Zhang Y (2020) Free trade and the environment-evidence from Chinese cities. Environ Dev Econ 25(6):561–582. https://doi.org/10.1017/S1355770X2000042X

    Article  Google Scholar 

  • Zhu H, Duan L, Guo Y, Yu K (2016) The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: evidence from panel quantile regression. Econ Model 58:237–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Jaison.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaison, M., Shajahan, A. Lights and the Invisibles: towards a regional/sector-wise policy approach exploring India’s economy–environment trade-offs. Asia-Pac J Reg Sci 8, 291–332 (2024). https://doi.org/10.1007/s41685-023-00326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41685-023-00326-2

Keywords

JEL Classification

Navigation