Skip to main content
Log in

Eu3+-doped Bovine Serum Albumin-derived Carbon Dots for Ratiometric Fluorescent Detection of Tetracycline

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The abuse of antibiotics has become a global concern, thus it is significant to develop simple antibiotic assays. Herein, a novel type of lanthanide-doped bovine serum albumin (BSA) derived carbon dots (BCDs) dubbed Eu-BCDs has been unveiled for ratiometric fluorescent detection of tetracycline (TC), which was formed from the one-step hydrothermal reaction of Eu3+ and BSA. Upon challenge with TC, the blue fluorescence of Eu-BCDs at 448 nm was gradually quenched due to the internal filtration effect, while the characteristic red fluorescence of Eu3+ at 618 nm was significantly enhanced owning to the antenna effect, leading to the ratiometric fluorescent detection of TC with fast response (2 min), a wide linear dynamic range (0–80 μmol/L), and high selectivity and sensitivity (limit of detection (LOD) of 3 nmol/L). Moreover, Eu-BCDs can be successfully applied for the ratiometric fluorescent detection of TC in environmental and biological samples, such as river water, milk, honey and serum. The Eu-BCDs sensing platform would have great application potential in view of its simple preparation, rapid response, high sensitivity and good selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol. 1996;165(6):359–69.

    Article  CAS  PubMed  Google Scholar 

  2. Khadem A, Soler L, Everaert N, Niewold TA. Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. Br J Nutr. 2014;112(7):1110–8.

    Article  CAS  PubMed  Google Scholar 

  3. Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci Total Environ. 2021;753: 141975.

    Article  CAS  PubMed  Google Scholar 

  4. Daghrir R, Drogui P. Tetracycline antibiotics in the environment: a review. Environ Chem Lett. 2013;11(3):209–27.

    Article  CAS  Google Scholar 

  5. Liu X, Zhang G, Liu Y, Lu S, Qin P, Guo X, Bi B, Wang L, Xi B, Wu F, Wang W, Zhang T. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ Pollut. 2019;246:163–73.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou X, Cuasquer GJP, Li Z, Mang HP, Lv Y. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine. Environ Int. 2021;146: 106280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roberts MC, Schwarz S. Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. J Environ Qual. 2016;45(2):576–92.

    Article  CAS  PubMed  Google Scholar 

  8. Onal A. Overview on liquid chromatographic analysis of tetracycline residues in food matrices. Food Chem. 2011;127(1):197–203.

    Article  Google Scholar 

  9. Granelli K, Elgerud C, Lundstrom A, Ohlsson A, Sjoberg P. Rapid multi-residue analysis of antibiotics in muscle by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2009;637(1–2):87–91.

    Article  CAS  PubMed  Google Scholar 

  10. Wang G, Zhang HC, Liu J, Wang JP. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk. Anal Biochem. 2019;564–565:40–6.

    Article  PubMed  Google Scholar 

  11. Lorenzetti AS, Sierra T, Domini CE, Lista AG, Crevillen AG, Escarpa A. Electrochemically reduced graphene oxide-based screen-printed electrodes for total tetracycline determination by adsorptive transfer stripping differential pulse voltammetry. Sensors. 2019;20(1):76.

    Article  PubMed Central  Google Scholar 

  12. Tan B, Zhao H, Du L, Gan X, Quan X. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosens Bioelectron. 2016;83:267–73.

    Article  CAS  PubMed  Google Scholar 

  13. Gao C, Liu Z, Chen J, Yan Z. A novel fluorescent assay for oxytetracycline hydrochloride based on fluorescence quenching of water-soluble CdTe nanocrystals. Luminescence. 2013;28(3):378–83.

    Article  CAS  PubMed  Google Scholar 

  14. Hou J, Yan J, Zhao Q, Li Y, Ding H, Ding L. A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders. Nanoscale. 2013;5(20):9558–61.

    Article  CAS  PubMed  Google Scholar 

  15. An XT, Zhuo SJ, Zhang P, Zhu CQ. Carbon dots based turn-on fluorescent probes for oxytetracycline hydrochloride sensing. RSC Adv. 2015;5(26):19853–8.

    Article  CAS  Google Scholar 

  16. Chen G, Song F, Wang J, Yang Z, Sun S, Fan J, Qiang X, Wang X, Dou B, Peng X. FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite. Chem Commun. 2012;48(24):2949–51.

    Article  CAS  Google Scholar 

  17. Gao Y, Jiao Y, Zhang H, Lu W, Liu Y, Han H, Gong X, Li L, Shuang S, Dong C. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor. J Mater Chem B. 2019;7(36):5502–9.

    Article  CAS  PubMed  Google Scholar 

  18. Han L, Liu SG, Dong XZ, Liang JY, Li NB, Luo HQ. Construction of an effective ratiometric fluorescent sensing platform for specific and visual detection of mercury ions based on target-triggered the inhibition on inner filter effect. J Hazard Mater. 2019;376:170–7.

    Article  CAS  PubMed  Google Scholar 

  19. Wang QX, Xue SF, Chen ZH, Ma SH, Zhang SQ, Shi GY, Zhang M. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens Bioelectron. 2017;94:388–93.

    Article  CAS  PubMed  Google Scholar 

  20. Mara MW, Tatum DS, March AM, Doumy G, Moore EG, Raymond KN. Energy transfer from antenna ligand to europium(III) followed using ultrafast optical and x-ray spectroscopy. J Am Chem Soc. 2019;141(28):11071–81.

    Article  CAS  PubMed  Google Scholar 

  21. Tan H, Ma C, Song Y, Xu F, Chen S, Wang L. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens Bioelectron. 2013;50:447–52.

    Article  CAS  PubMed  Google Scholar 

  22. Tan HL, Liu BX, Chen Y. Luminescence nucleotide/Eu3+ coordination polymer based on the inclusion of tetracycline. J Phys Chem C. 2012;116(3):2292–6.

    Article  CAS  Google Scholar 

  23. Shen Z, Zhang C, Yu XL, Li J, Wang ZY, Zhang ZP, Liu BH. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J Mater Chem C. 2018;6(36):9636–41.

    Article  CAS  Google Scholar 

  24. Hu J, Yang XF, Peng QQ, Wang FY, Zhu Y, Hu X, Zheng BZ, Du J, Xiao D. A highly sensitive visual sensor for tetracycline in food samples by a double-signal response fluorescent nanohybrid. Food Control. 2020;108: 106832.

    Article  CAS  Google Scholar 

  25. Li W, Zhu J, Xie G, Ren Y, Zheng YQ. Ratiometric system based on graphene quantum dots and Eu3+ for selective detection of tetracyclines. Anal Chim Acta. 2018;1022:131–7.

    Article  CAS  PubMed  Google Scholar 

  26. Mo M, Wang X, Ye L, Su Y, Zhong Y, Zhao L, Zhou Y, Peng J. A simple paper-based ratiometric luminescent sensor for tetracyclines using copper nanocluster-europium hybrid nanoprobes. Anal Chim Acta. 2022;1190: 339257.

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Du Q, Zhang X, Huang Y. Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu3+ fluorescence. Talanta. 2020;206: 120202.

    Article  CAS  PubMed  Google Scholar 

  28. Han S, Yang L, Wen Z, Chu S, Wang M, Wang Z, Jiang C. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J Hazard Mater. 2020;398: 122894.

    Article  CAS  PubMed  Google Scholar 

  29. Lim SY, Shen W, Gao ZQ. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44(1):362–81.

    Article  CAS  PubMed  Google Scholar 

  30. Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X. Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta. 2018;185(9):424.

    Article  Google Scholar 

  31. Rong MC, Wang DR, Li YY, Zhang YZ, Huang HY, Liu RF, Deng XZ. Green-emitting carbon dots as fluorescent probe for nitrite detection. J Anal Test. 2021;5:51–9.

    Article  Google Scholar 

  32. Chen ST, Chen CQ, Wang J, Luo F, Guo LH, Qiu B, Lin ZY. A bright nitrogen-doped-carbon-dots based fluorescent biosensor for selective detection of copper ions. J Anal Test. 2021;5:84–92.

    Article  Google Scholar 

  33. Tian YL, Ji YY, Zou X. Chen QM, Zhang SL, Gong ZJ. N, P Co-Doped Carbon Dots as Multifunctional Fluorescence Nano-Sensor for Sensitive and Selective Detection of Cr(VI) and Ascorbic Acid. J Anal Test, (2022). https://doi.org/10.1007/s41664-022-00213-3.

  34. Wang QL, Huang XX, Long YJ, Wang XL, Zhang HJ, Zhu R, Liang LP, Teng P, Zheng HZ. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–9.

    Article  CAS  Google Scholar 

  35. Lin ZY, Qu ZB, Chen ZH, Han XY, Deng LX, Luo QY, Jin ZW, Shi GY, Zhang M. The marriage of protein and lanthanide: unveiling a novel time-resolved fluorescence sensor array regulated by pH Toward High-throughput assay of metal ions in biofluids. Anal Chem. 2019;91(17):11170–7.

    Article  CAS  PubMed  Google Scholar 

  36. Stewart S, Ivy MA, Anslyn EV. The use of principal component analysis and discriminant analysis in differential sensing routines. Chem Soc Rev. 2014;43(1):70–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund of the Shanghai Science and Technology Committee (19ZR1473300), the director fund of Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration (SHUES2022C03), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Confict of Interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1220 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TT., Chen, ZH., Shi, GY. et al. Eu3+-doped Bovine Serum Albumin-derived Carbon Dots for Ratiometric Fluorescent Detection of Tetracycline. J. Anal. Test. 6, 365–373 (2022). https://doi.org/10.1007/s41664-022-00233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-022-00233-z

Keywords

Navigation