Skip to main content
Log in

Target Recycling Transcription of Lighting-Up RNA Aptamers for Highly Sensitive and Label-Free Detection of ATP

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

We describe here a target recycling transcription of lighting-up aptamer strategy for detecting ATP in human serums in a label-free means with high sensitivity. ATP molecules specifically recognize the binding aptamer and result in the structure switching of the DNA assembly probes to imitate the target ATP molecule recycling cycles through the toehold-mediated strand displacement reaction, which causes the formation of many dsDNAs containing the RNA promoter sequences for subsequent transcription generation of large amounts of lighting-up aptamers. The organic dye, malachite green, then associates with these lighting-up aptamers to produce significantly enhanced fluorescence signals, which can sensitively detect ATP within a dynamic range from 10 to 500 nM in a label-free way. The sensing approach shows a detection limit of 7.3 nM and also has an excellent selectivity for ATP analogue molecules. In addition, this method can detect ATP molecules in diluted human serum samples sensitively, which proves the promising potential to diagnose ATP-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang J, Jiang YX, Zhou CS, Fang XH. Aptamer-based ATP assay using a luminescent light switching complex. Anal Chem. 2005;77:3542–6.

    Article  CAS  Google Scholar 

  2. Kucherenko IS, Didukh DY, Soldatkin OO, Soldatkin AP. Amperometric biosensor system for simultaneous determination of adenosine-5’-triphosphate and glucose. Anal Chem. 2014;86:5455–62.

    Article  CAS  Google Scholar 

  3. Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc. 2010;132(27):9274–6.

    Article  CAS  Google Scholar 

  4. Huang DW, Niu CG, Zeng GM, Ruan M. Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes. Biosens Bioelectron. 2011;29:178–83.

    Article  CAS  Google Scholar 

  5. Wang P, Cheng ZY, Chen Q, Qu LL, Miao XM, Feng QM. Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP). Sens Actuators B. 2018;256:931–7.

    Article  CAS  Google Scholar 

  6. Zhang P, Zhu MS, Luo H, Zhang Q, Guo LE, Li Z, Jiang YB. Aggregationswitching strategy for promoting fluorescent sensing of biologically relevant species: a simple near-infrared cyanine dye highly sensitive and selective for ATP. Anal Chem. 2017;89:6210–5.

    Article  CAS  Google Scholar 

  7. Wang Y, Tang L, Li Z, Lin Y, Li J. In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cell. Nat Protoc. 2014;9(8):1944–55.

    Article  CAS  Google Scholar 

  8. Llaudet E, Hatz S, Droniou M, Dale N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem. 2005;77(10):3267.

    Article  CAS  Google Scholar 

  9. He HZ, Ma VPY, Leung KH, Chan DSH, Yang H, Cheng Z, Leung CH, Ma DL. A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP. Analyst. 2012;137(7):1538–40.

    Article  CAS  Google Scholar 

  10. Wang K, Liao J, Yang X, Zhao M, Chen M, Yao W, Tan W, Lan X. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron. 2015;63:172–7.

    Article  CAS  Google Scholar 

  11. Liu Z, Zhong Y, Hu Y, Yuan L, Luo R, Chen D, Wu M, Huang H, Li Y. Fluorescence strategy for sensitive detection of adenosine triphosphate in terms of evaluating meat freshness. Food Chem. 2019;270:573–8.

    Article  CAS  Google Scholar 

  12. Liang A, Ouyang H, Jiang Z. Resonance scattering spectral detection of trace ATP based on label-free aptamer reaction and nanogold catalysis. Analyst. 2011;136:4514–9.

    Article  CAS  Google Scholar 

  13. Scian M, Acchione M, Li M, Atkins WM. Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein. Biochemistry. 2014;53:991–1000.

    Article  CAS  Google Scholar 

  14. Yangyuoru PM, Dhakal S, Yu Z, Koirala D, Mwongela SM, Mao H. Singlemolecule measurements of the binding between small molecules and DNA aptamers. Anal Chem. 2012;84:5298–303.

    Article  CAS  Google Scholar 

  15. Kim SU, Jo EJ, Noh Y, Mun H, Ahn YD, Kim MG. Adenosine triphosphate bioluminescence-based bacteria detection using targeted photothermal lysis by gold nanorods. Anal Chem. 2018;90:10171–8.

    Article  CAS  Google Scholar 

  16. Khlyntseva SV, Vishnikin AB, Andruch V. Methods for the determination of adenosine triphosphate and other adenine nucleotides. J Anal Chem. 2009;64:657–73.

    Article  CAS  Google Scholar 

  17. Wang DD, Qi GH, Zhou Y, Zhang Y, Wang B, Hu P, Jin YD. Single-cell ATP detection and content analyses in electrostimulus-induced apoptosis using functionalized glass nanopipettes. Chem Comm. 2020;56:1561–4.

    Article  CAS  Google Scholar 

  18. Cancel MS, Simpson LW, Leach JB, White RJ. Direct, real-time detection of adenosine triphosphate release from astrocytes in three-dimensional culture using an integrated electrochemical aptamer-based sensor. ACS Chem Neurosci. 2019;10:2070–9.

    Article  Google Scholar 

  19. Feng G, Zhang BY, Wang SC, Ding ZY, Li G, Zhang XJ. Ratiometric ATP detection on gliding microtubules based on bioorthogonal fluorescence conjugation. Sens Actuators B Chem. 2019;301:127090.

    Article  CAS  Google Scholar 

  20. Zhou XM, Li JM, Tan LL, Li Q, Shang L. Novel perylene probe-encapsulated metal–organic framework nanocomposites for ratiometric fluorescence detection of ATP. J Mater Chem B. 2020;8:3661–6.

    Article  CAS  Google Scholar 

  21. Danesh NM, Ramezani M, Emrani AS, Abnous K, Taghdisi SM. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron. 2016;75:123–8.

    Article  Google Scholar 

  22. Gong X, Li JF, Zhou WJ, Xiang Y, Yuan R, Chai YQ. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes. Anal Chim Acta. 2014;828:80–4.

    Article  CAS  Google Scholar 

  23. Liu M, Song JP, Shuang SM, Dong C, Brennan JD, Li YF. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano. 2014;8:5564–73.

    Article  CAS  Google Scholar 

  24. Liu ZB, Chen SS, Liu BW, Wu JP, Zhou YB, He LY, Ding JS, Liu JW. Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Anal Chem. 2014;86:12229–35.

    Article  CAS  Google Scholar 

  25. Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev. 2019;48:1390–419.

    Article  CAS  Google Scholar 

  26. Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333:642–6.

    Article  CAS  Google Scholar 

  27. Victoria G, Geneva L, Seth A, Emil FK. Fluorogenic RNA aptamers: a nano-platform for fabrication of simple and combinatorial logic gates. Nanomaterials. 2018;8:984.

    Article  Google Scholar 

  28. Li DX, Yang F, Yuan R, Xiang Y. Lighting-up RNA aptamer transcription synchronization amplification for ultrasensitive and label-free imaging of microRNA in single cells. Anal Chim Acta. 2020;1102:84–90.

    Article  CAS  Google Scholar 

  29. Pribnow D. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci U S A. 1975;72:784–8.

    Article  CAS  Google Scholar 

  30. Jiao K, Zhu B, Guo L, Zhou H, Wang F, Zhang X, Shi J, Li Q, Wang L, Li J, Fan C. Programming switchable transcription of topologically constrained DNA. J Am Chem Soc. 2020;142:10739–46.

    Article  CAS  Google Scholar 

  31. Genot AJ, Zhang DY, Bath J, Turberfield AJ. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J Am Chem Soc. 2011;133:2177–82.

    Article  CAS  Google Scholar 

  32. Hu TX, Wen W, Zhang XH, Wang SF. Nicking endonuclease-assisted recycling of target–aptamer complex for sensitive electrochemical detection of adenosine triphosphate. Analyst. 2016;141:1506–11.

    Article  CAS  Google Scholar 

  33. Liu Y, Lei J, Huang Y, Ju H. “Off-on” electrochemiluminescence system for sensitive detection of ATP via target-induced structure switching. Anal Chem. 2014;86:8735.

    Article  CAS  Google Scholar 

  34. Song QW, Wang RH, Sun FF, Chen HK, Wang ZMK, Na N, Ouyang J. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron. 2017;87:760–3.

    Article  CAS  Google Scholar 

  35. Li X, Peng Y, Chai YQ, Yuan R, Xiang Y. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chem Commun. 2016;52:3673–6.

    Article  CAS  Google Scholar 

  36. Wei YL, Chen YX, Li HH, Shuang SM, Dong C, Wang GF. An exonuclease I- based label-free fluorometricaptasensor for adenosine triphosphate (ATP) detection with a wide concentration range. Biosens Bioelectron. 2015;63:311–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (22004010), the Chongqing Science and Technology Commission of China (cstc2019jcyj-msxmX0196), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201901135) and the Scientific Research Foundation of Chongqing University of Technology (W. Zhou).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Jiao Zhou or Yun Xiang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J.L., Jiang, B.Y., Zhou, W.J. et al. Target Recycling Transcription of Lighting-Up RNA Aptamers for Highly Sensitive and Label-Free Detection of ATP. J. Anal. Test. 5, 174–180 (2021). https://doi.org/10.1007/s41664-021-00170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00170-3

Keywords

Navigation