Skip to main content
Log in

A Controlled Transcription-Driven Light-Up Aptamer Amplification for Nucleoside Triphosphate Detection

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

In this study, we introduced a simple method for detecting nucleoside triphosphates (NTPs) using controlled transcription-driven light-up aptamer amplification. Based on the concentration of target NTP, the light-up aptamer was amplified using a DNA template encoding the Broccoli aptamer sequence through an incomplete transcription mixture (without each NTP). The Broccoli aptamer associated with DFHBI-1T produced significantly enhanced fluorescence signals that could sensitively detect NTPs in a label-free manner. In addition, the proposed assay was useful for quantitatively detecting NTPs in serum. Thus, we expect that this method has great potential for NTP analysis in bioassays and biological researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Acin-Perez, R., Gatti, D.L., Bai, Y., Manfredi, G.: Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab.Metab. 13, 712–719 (2011)

    Article  CAS  Google Scholar 

  2. Gourine, A.V., Llaudet, E., Dale, N., Spyer, K.M.: ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436, 108–111 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Kerr, C., Szmacinski, H., Fisher, M.L., Nance, B., Lakowicz, J.R., Akbar, A., Keillor, J.W., Lok Wong, T., Godoy-Ruiz, R., Toth, E.A., Weber, D.J., Eckert, R.L.: Transamidase site-targeted agents alter the conformation of the transglutaminase cancer stem cell survival protein to reduce GTP binding activity and cancer stem cell survival. Oncogene 36, 2981–2990 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Goldsmith, D.J., Carrey, E.A., Edbury, S.M., Marinaki, A.M., Simmonds, H.A.: GTP concentrations are elevated in erythrocytes of renal transplant recipients when conventional immunosuppression is replaced by the inosine monophosphate dehydrogenase inhibitor mycophenolic acid mofetil (MMF). Nucleosides Nucleotides Nucl Acids 23, 1407–1409 (2004)

    Article  CAS  Google Scholar 

  5. Fernadez, F., Shridas, P., Jiang, S., Aebi, M., Waechter, C.J.: Expression and characterization of a human cDNA that complements the temperature-sensitive defect in dolichol kinase activity in the yeast sec59-1 mutant: the enzymatic phosphorylation of dolichol and diacylglycerol are catalyzed by separate CTP-mediated kinase activities in Saccharomyces cerevisiae. Glycobiology 12, 555–562 (2002)

    Article  Google Scholar 

  6. Cornell, R.B., Northwood, I.C.: Regulation of CTP: phosphocholine ctidiylyltrnsferase by amphitropism and relocalization. Trends Biochem. Sci.Biochem. Sci. 25, 441–447 (2000)

    Article  CAS  Google Scholar 

  7. Lecca, D., Ceruti, S.: Uracil nucleotides: from metabolic intermediates to neuroprotection and neuroinflammation. Biochem. Pharmacol.. Pharmacol. 75, 1869–1881 (2008)

    Article  CAS  Google Scholar 

  8. Anderson, C.M., Parkinson, F.E.: Potential signalling roles for UTP and UDP: sources, regulation and release of uracil nucleotides. Trends Pharmacol. Sci.Pharmacol. Sci. 18, 387–392 (1997)

    Article  CAS  Google Scholar 

  9. Bradbury, D.A., Simmons, T.D., Slater, K.J., Crouch, S.P.: Measurement of the ADP:ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J. Immunol. Methods 240, 79–92 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Bianchi-Smiraglia, A., Bagati, A., Fink, E.E., Moparthy, S., Wawrzyniak, J.A., Marvin, E.K., Battaglia, S., Jowdy, P., Kolesnikova, M., Foley, C.E., Berman, A.E., Kozlova, N.I., Lipchick, B.C., Paul-Rosner, L.M., Bshara, W., Ackroyd, J.J., Shewach, D.S., Nikiforov, M.A.: Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene 36, 84–96 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. Huang, R., Zhou, P.K.: DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther.Transduct. Target. Ther. 6, 254 (2021)

    Article  CAS  Google Scholar 

  12. Kepp, O., Bezu, L., Yamazaki, T., Di Virgillio, F., Smyth, M.J., Kroemer, G., Galluzzi, L.: ATP and cancer immunisurveillance. EMBO J. 40(13), e108130 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gibson, J.J., Edwards, T.W.D., Birks, S.J., St Amour, N.A., Buhay, W.M., McEachern, P., Wolfe, B.B., Peters, D.L.: Progress in isotope tracer hydrology in Canada. Hydrol. Process. Process 19, 303–327 (2005)

    Article  CAS  Google Scholar 

  14. Huang, D., Zhang, Y., Chen, X.: Analysis of intracellular nucleoside triphosphate levels in normal and tumor cell lines by high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 784, 101–109 (2003)

    Article  CAS  Google Scholar 

  15. Cohen, S., Megherbi, M., Jordheim, L.P., Lefebvre, I., Perigaud, C., Dumontet, C., Guitton, J.: Simultaneous analysis of eight nucleoside triphosphates in cell lines by liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 3831–3840 (2009)

    Article  CAS  Google Scholar 

  16. Marion, D.: An introduction to biological NMR spectroscopy. Mol. Cell. Proteom. 12, 3006–3025 (2013)

    Article  CAS  Google Scholar 

  17. Ouellet, J.: RNA fluorescence with light-up aptamers. Front. Chem. 4, 29 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paige, J.S., Karen, Y.W., Samie, T.J.: RNA mimics of green fluorescent protein. Science 333, 642–646 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, K.Y., Leslie, B.J., Fei, J., Zhang, J., Ha, T.: Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. JACS 130, 19033–19038 (2013)

    Article  Google Scholar 

  20. Kartje, Z.J., Janis H.I., Mukhopadhyay, S., Gagnon, K.T.: Revisiting T7 RNA polymerase transcription in vitro with the Broccoli RNA aptamer as a simplified real-time fluorescent reporter. J. Biol. Chem. 296 (2021)

  21. Hong, Y., Kim, D.E., Park, Y.J., Kim, D.M., Byun, J.Y., Shin, Y.B.: MicroRNA detection using light-up aptamer amplification based on nuclease protection transcription. Chem. Commun. (Camb.)Commun. (Camb.) 58, 2359–2362 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. Moroney, S.E., Piccirilli, J.A.: Abortive products as initiation nucleotides during transcription by T7 RNA polymerase. Biochemistry 30(42), 10343–10349 (1991)

    Article  CAS  PubMed  Google Scholar 

  23. Gong, P., Martin, C.T.: Mechanism of instability in abortive cycling by T7 RNA polymerase. J. Biol. Chem. 281(33), 23533–23544 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Dousis, A., Ravichandran, K., Hobert, E.M., Moore, M.J., Rabideau, A.E.: An engineered T7 RNA polymerase that produces mRNA free of immunostimnlatory byproducts. Nat. Biotechnol.Biotechnol. 41(4), 560–568 (2023)

    Article  CAS  Google Scholar 

  25. Kennedy, W.P., Momand, J.R., Yin, Y.W.: Mechanism for De novo RNA synthesis and initiating nucleotide specificity by T7 RNA polymerase. J. Mol. Biol. 370, 256–268 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Kuzmine, I., Gottlieb, P.A., Martin, C.T.: Binding of the priming nucleotide in the initiation of transcription by T7 RNA polymerase. J. Biol. Chem. 278, 2819–2823 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Jia, Y., Patel, S.S.: Kinetic mechanism of GTP binding and RNA synthesis during transcription initiation by bacteriophage T7 RNA polymerase. J. Biol. Chem. 272, 30147–30153 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. Pal, S., Dasgupta, D.: Differentail screening calorimetric approach to study the effect of melting region upon transcritpion initiation by T7 RNA polymerase and role of high affinity GTP binding. J. Biomol. Struct. Dyn.Biomol. Struct. Dyn. 31(3), 288–298 (2013)

    Article  CAS  Google Scholar 

  29. Traut, T.W.: Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem.Biochem. 140, 1–22 (1994)

    Article  CAS  Google Scholar 

  30. Maity, D., Li, M., Ehlers, M., Gigante, A., Schmuck, C.: Correction: a metal-free fluorescence turn-on molecular probe for detection of nucleoside triphosphates. Chem. Commun. (Camb.)Commun. (Camb) 53, 12588 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. Mittal, L.S., Sharma, P., Kaur, N., Singh, P.: A perylenediimide based 'on-off’ chemosensor for the detection of nucleoside triphosphates: an efficient ensemble for monitoring alkaline phosphatase activity. Anal. Methods 11, 5320–5327 (2019)

    Article  CAS  Google Scholar 

  32. Ding, Y., Jia, Q., Wen, Y., Liu, W., Ge, J., Wu, J., Zhang, H., Wang, P.: New detection method for nucleoside triphosphates based on carbon dots: the distance-dependent singlet oxygen trapping. Anal. Chim. Acta 1031, 145–151 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Z., Zhou, X., Han, J., Xie, G., Liu, J.: DNA coated CoZn-ZIF metal-organic frameworks for fluorescent sensing guanosine triphosphate and discrimination of nucleoside triphosphates. Anal. Chim. Acta 1207, 339806 (2022)

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Z., Chen, S., Liu, B., Wu, J., Zhou, Y., He, L., Ding, J., Liu, J.: Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Anal. Chem. 86, 12229–12235 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J., Park, C., Kim, Y., Park, S.: Signal enhancement in ATP bioluminescence to detect bacerial pahogens via heat treatment. BioChip J. J. 11, 287–293 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF-2021R1C1C1009105) and the National Research Council of Science and Technology (NST) (CRC22021-500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyung-Ho Lee, Ju-Young Byun or Yong-Beom Shin.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DG., Lim, HJ., Lee, HY. et al. A Controlled Transcription-Driven Light-Up Aptamer Amplification for Nucleoside Triphosphate Detection. BioChip J 17, 487–495 (2023). https://doi.org/10.1007/s13206-023-00124-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00124-0

Keywords

Navigation