Skip to main content
Log in

Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

Observation of high energy and very high emission from Gamma Ray Bursts (GRBs) is crucial to study the gigantic explosion and the underline processes. With a large field-of-view and almost full duty cycle, the Water Cherenkov Detector Array (WCDA), a sub-array of the Large High Altitude Air Shower Observatory (LHAASO), is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.

Method

Nevertheless, the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector. To address this issue a new trigger method is developed in this article to lower the energy threshold of  WCDA for GRB observation.

Result

The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV. The sensitivity of the WCDA for GRB detection with the new trigger method is estimated. The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT. The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.W. Klebesadel, I.B. Strong, R.A. Olson, ApJ 182, L85 (1973)

    Article  ADS  Google Scholar 

  2. C. Kouveliotou, C.A. Meegan, G.J. Fishman, P.N. Bhat, M.S. Briggs, T.M. Koshut, W.S. Paciesas, G.N. Pendleton, ApJ 413, L101 (1993)

    Article  ADS  Google Scholar 

  3. K.Z. Stanek, ApJ 591, L17 (2003)

    Article  ADS  Google Scholar 

  4. A. MacFadyen, S.E. Woosley, BAAS 30, 1311 (1998)

    ADS  Google Scholar 

  5. P. Meszaros, ARA & A 40, 137 (2002)

    Article  ADS  Google Scholar 

  6. M. Ruffert, H.-T. Janka, A & A 344, 573 (1999)

    ADS  Google Scholar 

  7. S. Rosswog et al., A&A 360, 171 (2000)

    ADS  Google Scholar 

  8. B.P. Abbott, R. Abbott, T.D. Abbott, PRL 119, 161101 (2017)

    Article  ADS  Google Scholar 

  9. A. Goldstein, P. Veres, E. Burns, ApJL 848, L14 (2017)

    Article  ADS  Google Scholar 

  10. D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, ApJ 413, 281 (1993)

    Article  ADS  Google Scholar 

  11. B. Zhang, Int. J. Modern Phys. D 23, 1430002 (2014)

    Article  ADS  Google Scholar 

  12. P.N. Bhat, G.J. Fishman, C.A. Meegan, R.B. Wilson, M.N. Brock, W.S. Paciesas, Nature 359, 217 (1992)

    Article  ADS  Google Scholar 

  13. G. Cavallo, M.J. Rees, MNRAS 183, 359 (1978)

    Article  ADS  Google Scholar 

  14. J. Goodman, ApJ 308, L47 (1986)

    Article  ADS  Google Scholar 

  15. Frédéric. Piron, Comptes. rendus -Physique 17(6), 617–631 (2015)

    Article  ADS  Google Scholar 

  16. Ajello, ApJ 878, 52 (2019)

    Article  ADS  Google Scholar 

  17. P.-H.T. Tam, Q.-W. Tang, S.-J. Hou, R.-Y. Liu, X.-Y. Wang, ApJL 771, L13 (2013)

    Article  ADS  Google Scholar 

  18. R. Sari, T. Piran, R. Narayan, ApJL 497, L17 (1998)

    Article  ADS  Google Scholar 

  19. P. Kumar, R.B. Duran, MNRASL 400, L75 (2009)

    Article  ADS  Google Scholar 

  20. A.A. Abdo, Science 323, 1688 (2009a)

    Article  ADS  Google Scholar 

  21. A.A. Abdo, Nature 458, 607 (2009)

    Article  ADS  Google Scholar 

  22. E. Costa, Nature 387, 783 (1997)

    Article  ADS  Google Scholar 

  23. J. Van Paradijs, Nature 386, 686 (1997)

    Article  ADS  Google Scholar 

  24. M.R. Metzger, S.G. Djorgovski, S.R. Kulkarni, C.C. Steidel, K.L. Adelberger, D.A. Frail, E. Costa, F. Frontera, Nature 387, 878 (1997)

    Article  ADS  Google Scholar 

  25. D.A. Frail, S.R. Kulkarni, L. Nicastro, M. Feroci, G. Taylor, B. Nature 389, 261 (1997)

    Article  ADS  Google Scholar 

  26. T. Piran, Phys. Rep. 314, 575 (1999)

    Article  ADS  Google Scholar 

  27. V.A. Acciari, S. Ansoldi, L.A. Antonelli, Nature 575, 455 (2019)

    Article  ADS  Google Scholar 

  28. H. Abdalla, R. Adam, F. Aharonian, Nature 2019(575), 464 (2019)

    Article  ADS  Google Scholar 

  29. Chensz. Zhouxx. ApJ, 842, 31 (2017)

  30. L. Dirk, ApJ 843, 88 (2017)

    Article  ADS  Google Scholar 

  31. H. H. He, Radiation Detection Technology and Methods (2018), p. 2:7

  32. F. Aharonian, Q. An, Axikegu, L. X. Bai, et al., arXiv:2010.06205 (2020), 2010.06205

  33. F. Aharonian, Q. An, Axikegu, L. X. Bai, et al., arXiv:2101.03508 (2021), 2101.03508

  34. C. Shu Wang, ApJ 54, 86 (2014)

    Google Scholar 

  35. Y. Liu, ApJ 826, 63 (2016)

    Article  ADS  Google Scholar 

  36. C. Jin, L.Q. Yin, RDTM 3, 19 (2019)

    Google Scholar 

  37. Z. Cao, M.J. Chen, H.C. Li, Eur. Phys. J. Conf. 209, 01010 (2018)

    Article  Google Scholar 

  38. Y. Zhao, Q. Yuan, Int. J. Modern Phys. D 25, 01 (2016)

    Article  Google Scholar 

  39. Heck, D., Knapp, J., Capdevielle, J. N., Shatz, G., Thouw,T. Forschungszentrum Karlsruhe Report No. FZKA 6019 (1998)

  40. S. Agostinelli et al., Geant4 Collab. Nucl. Inst. MethodsPhys. Res. A 506, 250–303 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China under the Grant 2018YFA0404201 and the Natural Sciences Foundation of China under the Grants 12022502, 11635011 and the Key R&D Program of SiChuan Province under the Grant 2019ZYZF0001. The authors would like to thank doctor Yibin Pan from University of Wisconsin for his comments and suggestions.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to L. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharonian, F., An, Q., Axikegu et al. Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA. Radiat Detect Technol Methods 5, 531–541 (2021). https://doi.org/10.1007/s41605-021-00281-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-021-00281-6

Keywords

Navigation