Skip to main content
Log in

Novel electrically conductive electrospun PCL-MXene scaffolds for cardiac tissue regeneration

  • Original Article
  • Published:
Graphene and 2D Materials Aims and scope Submit manuscript

Abstract

Effective cardiac tissue regeneration necessitates scaffolds that mimic the native extracellular matrix and possess desirable properties, such as electrical conductivity and biocompatibility. The choice of an appropriate fabrication method is paramount in achieving reproducibility, scalability, and rapid production of cardiac tissue patches. Electrospinning, a versatile and widely utilized technique, offers precise control over fiber diameter, pore size, and alignment, rendering it an ideal method for creating intricate cardiac scaffolds. In light of the limitations of existing therapies and the need for innovative approaches, this research aims to explore the development of novel patches for cardiac tissue regeneration. By investigating the integration of MXenes into electrospun polycaprolactone (PCL) membranes, we aim to harness the unique properties of MXenes to create conductive, biocompatible, and mechanically robust scaffolds that promote cell adhesion, proliferation, and functional maturation. The application of oxygen plasma treatment enhances the infiltration of MXene into the PCL electrospun membrane, significantly reducing the surface contact angle and promoting cell adhesion. Regardless of the number of MXene deposition repetitions, all variants demonstrated strong biocompatibility and supported the formation of cell symplasts after fibroblast seeding. The remarkable electrical conductivity of PCL-MXene membranes, coupled with the positive biological outcomes presented in this study, has the potential to drive significant advancements in the field of cardiac tissue engineering. This research offers fresh insights and approaches to tackle the challenges associated with myocardial repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study. The raw data are available on request.

References

  1. Mortality and global health estimates (2022) [Online]. Available: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019.

  2. European Cardiovascular Disease Statistics (2017) edition

  3. Baei P, Hosseini M, Baharvand H, Pahlavan S (2020) Electrically conductive materials for in vitro cardiac microtissue engineering. J Biomed Mater Res Part A 108(5):1203–1213. https://doi.org/10.1002/JBM.A.36894

    Article  CAS  Google Scholar 

  4. Alegret N, Dominguez-Alfaro A, Mecerreyes D (2019) 3D scaffolds based on conductive polymers for biomedical applications. Biomacromol 20(1):73–89. https://doi.org/10.1021/ACS.BIOMAC.8B01382/ASSET/IMAGES/LARGE/BM-2018-013823_0013.JPEG

    Article  CAS  Google Scholar 

  5. Yanamandala M et al (2017) Overcoming the roadblocks to cardiac cell therapy using tissue engineering. J Am Coll Cardiol 70(6):766–775. https://doi.org/10.1016/J.JACC.2017.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weinberger F, Mannhardt I, Eschenhagen T (2017) Engineering cardiac muscle tissue: a maturating field of research. Circ Res 120(9):1487–1500. https://doi.org/10.1161/CIRCRESAHA.117.310738

    Article  CAS  PubMed  Google Scholar 

  7. Scott L, Jurewicz I, Jeevaratnam K, Lewis R (2021) Carbon nanotube-based scaffolds for cardiac tissue engineering—Systematic review and narrative synthesis. Bioengineering. https://doi.org/10.3390/BIOENGINEERING8060080

    Article  PubMed  PubMed Central  Google Scholar 

  8. You JO, Rafat M, Ye GJC, Auguste DT (2011) Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett 11(9):3643–3648. https://doi.org/10.1021/NL201514A/SUPPL_FILE/NL201514A_SI_002.AVI

    Article  CAS  PubMed  Google Scholar 

  9. Orza A et al (2011) Electrically conductive gold-coated collagen nanofibers for placental-derived mesenchymal stem cells enhanced differentiation and proliferation. ACS Nano 5(6):4490–4503. https://doi.org/10.1021/NN1035312/SUPPL_FILE/NN1035312_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  10. Ravichandran R, Sridhar R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2014) Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration. Macromol Biosci 14(4):515–525. https://doi.org/10.1002/MABI.201300407

    Article  CAS  PubMed  Google Scholar 

  11. Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S, Tafazzoli-Shadpour M, Baharvand H, Aghdami N (2016) Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater Sci Eng C Mater Biol Appl 63:131–141. https://doi.org/10.1016/J.MSEC.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  12. Sherrell PC et al (2017) Rational design of a conductive collagen heart patch. Macromol Biosci 17(7):1600446. https://doi.org/10.1002/MABI.201600446

    Article  Google Scholar 

  13. Wu Y, Wang L, Guo B, Ma PX (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3d cardiac anisotropy. ACS Nano 11(6):5646–5659. https://doi.org/10.1021/ACSNANO.7B01062/SUPPL_FILE/NN7B01062_SI_008.AVI

    Article  CAS  PubMed  Google Scholar 

  14. Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME (2018) UV-assisted 3d bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng Part C Methods 24(2):74–88. https://doi.org/10.1089/TEN.TEC.2017.0346

    Article  CAS  PubMed  Google Scholar 

  15. Ahadian S et al (2017) Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater 52:81–91. https://doi.org/10.1016/J.ACTBIO.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  16. Hitscherich P et al (2018) Electroactive graphene composite scaffolds for cardiac tissue engineering. J Biomed Mater Res A 106(11):2923–2933. https://doi.org/10.1002/JBM.A.36481

    Article  CAS  PubMed  Google Scholar 

  17. Bao R, Tan B, Liang S, Zhang N, Wang W, Liu W (2017) A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterial 122:63–71. https://doi.org/10.1016/J.BIOMATERIALS.2017.01.012

    Article  CAS  Google Scholar 

  18. Smith AST et al (2017) Micro- and nano-patterned conductive graphene–PEG hybrid scaffolds for cardiac tissue engineering. Chem Commun 53(53):7412–7415. https://doi.org/10.1039/C7CC01988B

    Article  CAS  Google Scholar 

  19. Liu H et al (2023) An electroconductive hydrogel scaffold with injectability and biodegradability to manipulate neural stem cells for enhancing spinal cord injury repair. Biomacromolecule 24(1):86–97. https://doi.org/10.1021/acs.biomac.2c00920

    Article  CAS  Google Scholar 

  20. Furlani F et al (2023) Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration. Int J Biol Macromol 224:266–280. https://doi.org/10.1016/j.ijbiomac.2022.10.122

    Article  CAS  PubMed  Google Scholar 

  21. Srinivasan SY et al (2023) Conductive bacterial nanocellulose-polypyrrole patches promote cardiomyocyte differentiation. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.3c00303

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ghosh S, Dhiman M, Gupta S, Roy P, Lahiri D (2023) Electro-conductive chitosan/graphene bio-nanocomposite scaffold for tissue engineering of the central nervous system. Biomaterial. https://doi.org/10.1016/j.bioadv.2023.213596

    Article  Google Scholar 

  23. Nekounam H et al (2021) Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2020.111083

    Article  Google Scholar 

  24. Gogotsi Y, Anasori B (2019) The Rise of MXenes. ACS Nano 13(8):8491–8494. https://doi.org/10.1021/acsnano.9b06394

    Article  CAS  PubMed  Google Scholar 

  25. Gokce C, Gurcan C, Delogu LG, Yilmazer A (2022) 2D materials for cardiac tissue repair and regeneration. Front Cardiovasc Med. https://doi.org/10.3389/FCVM.2022.802551

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gazzi A et al (2019) Photodynamic therapy based on graphene and MXene in cancer theranostics. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2019.00295/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kyrylenko S et al (2022) MXene-assisted ablation of cells with a pulsed near-infrared laser. ACS Appl Mater Interfaces 14(25):28683–28696. https://doi.org/10.1021/ACSAMI.2C08678/ASSET/IMAGES/LARGE/AM2C08678_0011.JPEG

    Article  CAS  PubMed  Google Scholar 

  28. Fusco L et al (2023) V4C3 MXene immune profiling and modulation of t cell-dendritic cell function and interaction. Small Methods. https://doi.org/10.1002/smtd.202300197

    Article  PubMed  Google Scholar 

  29. Fusco L et al (2022) Immune profiling and multiplexed label-free detection of 2d mxenes by mass cytometry and high-dimensional imaging. Adv Mater. https://doi.org/10.1002/adma.202205154

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peng G, Keshavan S, Delogu L, Shin Y, Casiraghi C, Fadeel B (2022) Two-dimensional transition metal dichalcogenides trigger trained immunity in human macrophages through epigenetic and metabolic pathways. Small 18:20. https://doi.org/10.1002/smll.202107816

    Article  CAS  Google Scholar 

  31. Driscoll N et al (2021) MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci Transl Med. https://doi.org/10.1126/SCITRANSLMED.ABF8629/SUPPL_FILE/SCITRANSLMED.ABF8629_DATA_FILE_S1.ZIP

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang Y et al (2021) Ti3C2TxMXene flakes for optical control of neuronal electrical activity. ACS Nano 15(9):14662–14671. https://doi.org/10.1021/ACSNANO.1C04431/SUPPL_FILE/NN1C04431_SI_004.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y et al (2023) Toward Smart Sensing by MXene. Small. https://doi.org/10.1002/smll.202206126

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lai QT, Zhao XH, Sun QJ, Tang Z, Tang XG, Roy VAL (2023) Emerging MXene-based flexible tactile sensors for health monitoring and haptic perception. Small. https://doi.org/10.1002/smll.202300283

    Article  PubMed  Google Scholar 

  35. Manisekaran R, Chettiar ADR, Kandasamy G, GarciaContreras R, AcostaTorres LS (2023) State of the art: MXene structures in nano oncology. Biomater Adv 147:213354. https://doi.org/10.1016/j.bioadv.2023.213354

    Article  CAS  PubMed  Google Scholar 

  36. Solangi NH, Mazari SA, Mubarak NM, Karri RR, Rajamohan N, Vo DVN (2023) Recent trends in Mxene based material for biomedical applications. Environ Res 222:115337. https://doi.org/10.1016/j.envres.2023.115337

    Article  CAS  PubMed  Google Scholar 

  37. Schmitt PR, Dwyer KD, Coulombe KLK (2022) Current applications of polycaprolactone as a scaffold material for heart regeneration. ACS Appl Bio Mater 5(6):2461–2480. https://doi.org/10.1021/acsabm.2c00174

    Article  CAS  PubMed  Google Scholar 

  38. Park D, Lee SJ, Choi DK, Park JW (2023) Therapeutic agent-loaded fibrous scaffolds for biomedical applications. Pharmaceutics. https://doi.org/10.3390/pharmaceutics15051522

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kołtunowicz TN et al (2021) Investigation of AC electrical properties of mxene-pcl nanocomposites for application in small and medium power generation. Energies 14(21):7123. https://doi.org/10.3390/en14217123

    Article  CAS  Google Scholar 

  40. Diedkova K et al. (2022) The Multistep Process of Coating PCL Membranes with MXene Solution pp. NRA17–1-NRA17–4: https://doi.org/10.1109/NAP55339.2022.9934231

  41. Kyrylenko S et al. (2020) Bio-Functionalization of Electrospun Polymeric Nanofibers by Ti3CTx MXene Proc 2020 IEEE 10th Int. Conf. Nanomaterials Appl. Prop. N. 2020: https://doi.org/10.1109/NAP51477.2020.9309612

  42. Diedkova K et al (2022) Polycaprolactone-MXene nanofibrous scaffolds for tissue engineering. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c22780

    Article  Google Scholar 

  43. Seddighian A, Ganji F, Baghaban-Eslaminejad M, Bagheri F (2021) Electrospun PCL scaffold modified with chitosan nanoparticles for enhanced bone regeneration. Prog Biomater 10(1):65–76. https://doi.org/10.1007/s40204-021-00153-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zaret BL, Beller GA (2010) Clinical nuclear cardiology: state of the art and future directions. Clin Nucl Cardiol State Art Futur Dir 12:1–878. https://doi.org/10.1016/C2009-0-53360-0

    Article  Google Scholar 

  45. Tayebi T et al (2021) Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci Rep. https://doi.org/10.1038/S41598-021-86340-W

    Article  PubMed  PubMed Central  Google Scholar 

  46. Coleman MM, Zarian J (1979) Fourier-transform infrared studies of polymer blends. II. Poly(ϵ-caprolactone)–poly(vinyl chloride) system. J Polym Sci Polym Phys Ed 17(5):837–850. https://doi.org/10.1002/POL.1979.180170509

    Article  CAS  Google Scholar 

  47. Hu T, Hu M, Gao B, Li W, Wang X (2018) Screening surface structure of mxenes by high-throughput computation and vibrational spectroscopic confirmation. J Phys Chem C 122(32):18501–18509. https://doi.org/10.1021/ACS.JPCC.8B04427/SUPPL_FILE/JP8B04427_SI_001.PDF

    Article  CAS  Google Scholar 

  48. Korniienko V et al (2021) Functional and biological characterization of chitosan electrospun nanofibrous membrane nucleated with silver nanoparticles. Appl Nanosci. https://doi.org/10.1007/s13204-021-01808-5

    Article  Google Scholar 

  49. Fan H, Guo Z (2020) Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci 8(6):1502–1535. https://doi.org/10.1039/C9BM01729A

    Article  CAS  PubMed  Google Scholar 

  50. Lin WC, Razali NAM (2019) Temporary wettability tuning of PCL/PDMS micro pattern using the plasma treatments. Mater 12:644. https://doi.org/10.3390/MA12040644

    Article  CAS  Google Scholar 

  51. Basara G et al (2022) Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering. Acta Biomater 139:179–189. https://doi.org/10.1016/J.ACTBIO.2020.12.033

    Article  CAS  PubMed  Google Scholar 

  52. Liang Y, Mitriashkin A, Lim TT, Goh JCH (2021) Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterial 276:121008. https://doi.org/10.1016/J.BIOMATERIALS.2021.121008

    Article  CAS  Google Scholar 

  53. Sundaram A, Francis BM, Dhanabalan SC, Ponraj JS (2021) Transition metal carbide—MXene. Handb carbon-based nanomater. Elsevier, pp 671–709

    Chapter  Google Scholar 

  54. Sang M et al (2022) Advanced MXene/shear stiffening composite-based sensor with high-performance electromagnetic interference shielding and anti-impacting Bi-protection properties for smart wearable device. Chem Eng J. https://doi.org/10.1016/J.CEJ.2022.135869

    Article  Google Scholar 

  55. Gil-Cabrerizo P, Scacchetti I, Garbayo E, Blanco-Prieto MJ (2023) Cardiac tissue engineering for myocardial infarction treatment. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2023.106439

    Article  PubMed  Google Scholar 

  56. Yu Z et al (2023) 3D conductive scaffolds of MXene@PCL with high conductivity and small line width fabricated by electric-field-driven jet 3D printing and electrostatic self-assembly. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2023.105704

    Article  Google Scholar 

  57. Shokrollahi P, Omidi Y, Cubeddu LX, Omidian H (2023) Conductive polymers for cardiac tissue engineering and regeneration. J Biomed Mater Res Part B Appl Biomater. https://doi.org/10.1002/jbm.b.35293

    Article  Google Scholar 

  58. Akbarzadeh A, Sobhani S, SoltaniKhaboushan A, Kajbafzadeh AM (2023) Wholeheart tissue engineering and cardiac patches: challenges and promises. Bioengineering. https://doi.org/10.3390/bioengineering10010106

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang B et al (2023) Functional acellular matrix for tissue repair. Mater. Today Bio 18:100530. https://doi.org/10.1016/j.mtbio.2022.100530

    Article  CAS  PubMed  Google Scholar 

  60. Salaris V, López D, Kenny JM, Peponi L (2023) Hydrolytic degradation and bioactivity of electrospun PCL-MG-NPS fibrous mats. Molecules. https://doi.org/10.3390/molecules28031001

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dias JR, Sousa A, Augusto A, Bártolo PJ, Granja PL (2022) Electrospun Polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers (Basel). https://doi.org/10.3390/polym14163397

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ye G et al (2020) Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics 10(5):2047–2066. https://doi.org/10.7150/THNO.38876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rafieerad A et al (2019) Quantum dots: application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine (Adv Healthcare Mater 16/2019). Adv Healthc Mater 8(16):1970067. https://doi.org/10.1002/ADHM.201970067

    Article  Google Scholar 

  64. Rafieerad A et al (2021) Fabrication of smart tantalum carbide Mxene quantum dots with intrinsic immunomodulatory properties for treatment of allograft vasculopathy. Adv Funct Mater 31(46):2170341. https://doi.org/10.1002/ADFM.202170341

    Article  Google Scholar 

  65. Asaro GA et al (2023) MXene functionalized collagen biomaterials for cardiac tissue engineering driving iPSC-derived cardiomyocyte maturation. Npj 2D Mater Appl 71(1):1–13. https://doi.org/10.1038/s41699-023-0409-w

    Article  Google Scholar 

  66. Salmi MS, Ahmed U, Aslfattahi N, Rahman S, Hardy JG, Anwar A (2022) Potent antibacterial activity of MXene-functionalized graphene nanocomposites. RSC Adv 12(51):33142–33155. https://doi.org/10.1039/D2RA04944A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Santos X et al (2022) Antibacterial capability of MXene (Ti3C2Tx) to produce PLA active contact surfaces for food packaging applications. Membranes Basel 12(11):1146. https://doi.org/10.3390/MEMBRANES12111146

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA (2016) Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3):3674–3684. https://doi.org/10.1021/ACSNANO.6B00181

    Article  CAS  PubMed  Google Scholar 

  69. Shan G, Ding Z, Gogotsi Y (2023) Two-dimensional MXenes and their applications. Front Phys. https://doi.org/10.1007/s11467-022-1254-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Horizon Europe MSCA-2021-SE-01 project MX-MAP (#101086184) and H2020-MSCA-RISE-2019 SALSETH (#872370) and received support from the Ministry of Education and Science of Ukraine (0122U000784).

Author information

Authors and Affiliations

Authors

Contributions

K.D. - Conceptualisation, membrane preparation, cell culture, wrote the manuscript; Y. H. - contact angle, 3D visualization; W. S. - Raman, 3D visualization; V. K. - bacteriology experiment; B. Petrovic - conductivity measurements, SEM; A. R. - SEM of bacteria, 3D visualization; A. Stolarczyk - FTIR; N.Waloszczyk - Raman; I. Yanko - SEM of bacteria, figure preparation; K. Jekabsons - cell fluorescent microscopy; M. Čaplovičová - HRTEM; A.D.P. - HRTEM and manuscript writing; V. Z. - MXene preparation; O. Gogotsi -MAX-phase synthesis; I.Roslyk - MXene synthesis and delamination; I. Baginskiy - membrane impregnation of MXene; M. Radovic - electroconductivity measurement; S. Kojic - electroconductivity description; U. R. -conceptualization of biological experiment, manuscript writing; M. P. - supervision. manuscript writing and correction. All authors reviewed the manuscript.

Corresponding author

Correspondence to Maksym Pogorielov.

Ethics declarations

Conflict of interest

Authors declare no conflicting interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1697 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diedkova, K., Husak, Y., Simka, W. et al. Novel electrically conductive electrospun PCL-MXene scaffolds for cardiac tissue regeneration. Graphene and 2D mater 9, 59–76 (2024). https://doi.org/10.1007/s41127-023-00071-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-023-00071-5

Keywords

Navigation