Skip to main content
Log in

Application of stochastic design optimization to a passenger car diesel engine to reduce emission spread in a vehicle fleet

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

This paper demonstrates the advantages of stochastic design optimization on a passenger car diesel engine: the emission distribution in the vehicle fleet can be significantly reduced by optimizing the base engine calibration taking into account component tolerances. This paper is an extension to the work presented in [25]. The conventional calibration approach of using empirical safety coefficients is replaced by explicitly taking into account the uncertainty stemming from manufacturing tolerances. The method enables us to treat low-emission spread in a fleet as an optimization target. This process enables a more robust design and helps to avoid recalibration steps that potentially generate high costs. The method consists of four steps: an initial uncertainty analysis, which accounts for engine component tolerances and determines the underlying parameter uncertainty of the engine model—with parameter uncertainty being deviations in the model parameters resulting from component tolerances. Followed by a measurement campaign according to the design of experiments principles, the training of a stochastic engine model and the solving a stochastic optimization problem. The latter two are discussed in more detail. First, the stochastic models are validated on transient testbed measurements with different setups, which are subject to uncertainty. The model error for both engine-out particulate matter and nitrogen oxides (\({\text{NO}}_{{ x}}\)) is extremely low. Then, stochastic optimization is performed on a calibration task aiming to minimize engine-out PM for the entire fleet while ensuring that the \({\text{NO}}_{{ x}}\) emission remains below a given upper threshold, again for the entire fleet. Boundary constraints and smoothness constraints are employed to ensure feasibility and smooth engine maps. The optimization results are compared to the original calibration of the test engine—both for a representative nominal engine and the expected fleet behavior. The results show a significant improvement in engine-out PM while complying with the imposed constraints, including the \({\text{NO}}_{{ x}}\) emission limit for the entire fleet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ASC:

Ammonia slip catalyst

BC:

Best case

CAC:

Charge air cooler

CAD:

Crank angle degree

CRP:

Common rail pressure

\({\text {CO}}_{{2}}\) :

Carbon dioxide

DoE:

Design of experiments

DPF:

Diesel particulate filter

ECU:

Engine control unit

EGR:

Exhaust gas recirculation

GP:

Gaussian process

LNT:

Lean \({\text{NO}}_{{ x}}\) trap

LOOCV:

Leave-one-out cross-validation

MAF:

Mass air flow sensor

MC:

Monte Carlo

MV:

Mean value

\({\text {NO}}_{{x}}\) :

Nitrogen oxides

ODCM:

Online DoE with constraint modeling

OP:

Operating point

PM:

Particulate matter

\({\text{R}}^{2}\) :

Coefficient of determination

RDE:

Real driving emissions

SCR:

Selective catalytic reduction

SE:

Squared exponential

TDCf:

Top dead center firing

VaR:

Value at Risk

WLTC:

Worldwide harmonized Light-duty vehicles Test Cycle

WC:

Worst case

\(\alpha\) :

Confidence level

\(\delta _\text{cum}\) :

Cumulative percent error

\(\phi _\text {MI}\) :

Start of injection of the main injection

\(\psi _\text {EGR,LP}\) :

Mass fraction of the low-pressure EGR

\(\mathcal {N}\) :

Normal distribution

\({m}_{{\text {CC}}}\) :

Cylinder charge

\({m}_{{\text {IAM}}}\) :

Intake air mass

\({m}_\text {Inj}\) :

Total injected fuel mass

\({m}_\text {PoI}\) :

Injected fuel mass of the post-injection

\({m}_\text {PI1}\) :

Injected fuel mass of the 1st pilot injection

\({m}_\text {PI2}\) :

Injected fuel mass of the 2nd pilot injection

\({n}_\text {Eng}\) :

Engine speed

P :

Effective power output

\({p}_\text {2}\) :

Charge pressure

\({t}_\text {PoI}\) :

Time distance between the main and the post-injection

\({t}_\text {PI1}\) :

Time distance between the second pilot and the main injection

\({t}_\text {PI2}\) :

Time distance between the first pilot and the second pilot injection

\({X}_{{\text {EGR}}}\) :

Exhaust gas recirculation rate

References

  1. Andrews, J.L.: Addressing overfitting and underfitting in Gaussian model-based clustering. Comput. Stat. Data Anal. 127, 160–171 (2018). https://doi.org/10.1016/j.csda.2018.05.015

    Article  MathSciNet  MATH  Google Scholar 

  2. AVL List GmbH: Smoke value measurement with the Filter-Paper-Method. AVL List GmbH (2005). https://www.avl.com/documents/10138/885893/Application+Notes

  3. Baar, R., et al.: Antriebe. In: S. Pischinger, U. Seiffert (eds.) Vieweg Handbuch Kraftfahrzeugtechnik, ATZMTZ, 8 edn.. Springer Vieweg, Wiesbaden, pp. 253–573 (2016). https://doi.org/10.1007/978-3-658-09528-4_5

  4. Beatrice, C., Napolitano, P., Guido, C.: Injection parameter optimization by DoE of a light-duty diesel engine fed by bio-ethanol/RME/diesel blend. Appl. Energy 113, 373–384 (2014). https://doi.org/10.1016/j.apenergy.2013.07.058

  5. Berger, B.: Modeling and Optimization for Stationary Base Engine Calibration. PhD Thesis, mediaTUM, Munich, Germany (2012). http://mediatum.ub.tum.de?id=1108936

  6. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodological) 26(2), 211–243 (1964). https://doi.org/10.1111/j.2517-6161.1964.tb00553.x

    Article  MATH  Google Scholar 

  7. Efron, B.: Bootstrap methods: another look at the Jackknife. Ann. Stat. 7(1), 1–26 (1979). https://doi.org/10.1214/aos/1176344552

    Article  MathSciNet  MATH  Google Scholar 

  8. European Commission: Commission Regulation (EC) No 692/2008 of 18 July 2008 implementing and amending Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information (Text with EEA relevance)Text with EEA relevance. Official Journal of the European Union 51, 1–136 (2019). http://data.europa.eu/eli/reg/2008/692/2019-09-01

  9. Frazier, P.I.: Bayesian Optimization. In: Recent Advances in Optimization and Modeling of Contemporary Problems, TutORials in Operations Research, pp. 255–278. INFORMS (2018). https://doi.org/10.1287/educ.2018.0188

  10. Friedrich, C., Auer, M., Stiesch, G.: Model based calibration techniques for medium speed engine optimization: investigations on common modeling approaches for modeling of selected steady state engine outputs. SAE Int. J. Engines 9(4), 1989–1998 (2016). https://doi.org/10.4271/2016-01-2156

    Article  Google Scholar 

  11. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian Optimization with Unknown Constraints. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI’14, pp. 250–259. AUAI Press, Quebec City (2014). https://doi.org/10.5555/3020751.3020778

  12. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992). https://doi.org/10.1162/neco.1992.4.1.1

  13. Gutjahr, T., Kruse, T., Huber, T.: Advanced modeling and optimization for virtual calibration of internal combustion engines. In: NDIA Ground Vehicle Systems Engineering and Technology Symposium. NDIA Michigan Chapter, Novi, MI, USA (2017)

  14. Haase, D.: Ein neues verfahren zur modellbasierten prozessoptimierung auf der grundlage der statistischen versuchsplanung am beispiel eines ottomotors mit elektromagnetischer ventilsteuerung (EMVS). Doctoral Thesis, Technische Universität Dresden, Dresden (2004)

  15. Hartmann, B., Heuser, P., Kloppenburg, E., Diener, R.: Online-methods for engine test bed measurements considering engine limits. In: M. Bargende, H.C. Reuss, J. Wiedemann (eds.) 16th International Stuttgart Symposium. Springer Fachmedien Wiesbaden, Wiesbaden, pp. 1251–1264 (2016). https://doi.org/10.1007/978-3-658-13255-2_92

  16. Hoffmann, S., Schrott, M., Huber, T., Kruse, T.: Model-based methods for the calibration of modern internal combustion engines. MTZ Worldwide 76(4), 24–29 (2015). https://doi.org/10.1007/s38313-014-1024-9

  17. Hubbard, D.W.: The illusion of intangibles: why immeasurables aren’t. In: How to Measure Anything: Finding the Value of Intangibles in Business, 3 edn. Wiley, Hoboken, pp. 29–68 (2014)

  18. Kuder, J., Kruse, T.: Parameteroptimierung an Ottomotoren mit Direkteinspritzung. MTZ 61(6), 378–384 (2000). https://doi.org/10.1007/BF03226577

    Article  Google Scholar 

  19. Langouët, H., Métivier, L., Sinoquet, D., Tran, Q.H.: Optimization for Engine Calibration. In: EngOpt 2008 : International Conference on Engineering Optimization, pp. 1–5. E-Papers Servicos Ed. Ltda., Rio de Janeiro, Brazil (2008). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.618.7080&rep=rep1&type=pdf

  20. Lewis-Beck, M.S., Skalaban, A.: The R-squared: some straight talk. Polit. Anal. 2, 153–171 (1990). https://www.jstor.org/stable/23317769

  21. MacKay, D.J.C.: Introduction to Gaussian processes. In: Bishop, C.M. (ed.) Neural Networks and Machine Learning, no. 168 in NATO ASI Series, 1st edn, pp. 133–166. Springer, New York (1998)

    Google Scholar 

  22. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979). https://doi.org/10.2307/1268522

    Article  MathSciNet  MATH  Google Scholar 

  23. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949). https://doi.org/10.1080/01621459.1949.10483310

    Article  MATH  Google Scholar 

  24. Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005). https://doi.org/10.1093/bioinformatics/bti499

  25. Mourat, K., Eckstein, C., Koch, T.: A stochastic design optimization methodology to reduce emission spread in combustion engines. Automot. Engine Technol. (2020). https://doi.org/10.1007/s41104-020-00073-y

    Article  Google Scholar 

  26. Papalambros, P.Y., Wilde, D.J.: Principles of Optimal Design: Modeling and Computation, 3 edn. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316451038

  27. Piffl, M.: Maßnahmen zur sicherstellung der produktionskonformität. MTZ 80(6), 22–31 (2019).  https://doi.org/10.1007/s35146-019-0034-1

  28. Plumlee, M., Tuo, R.: Building accurate emulators for stochastic simulations via quantile kriging. Technometrics 56(4), 466–473 (2014). https://doi.org/10.1080/00401706.2013.860919

    Article  MathSciNet  Google Scholar 

  29. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006). http://www.gaussianprocess.org/gpml/chapters/RW.pdf

  30. Reşitoğlu, B.A., Altinişik, K., Keskin, A.: The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol. Environ. Policy 17(1), 15–27 (2015). https://doi.org/10.1007/s10098-014-0793-9

    Article  Google Scholar 

  31. Röpke, K., von Essen, C.: DoE in engine development. Qual. Reliab. Eng. Int. 24(6), 643–651 (2008). https://doi.org/10.1002/qre.941

    Article  Google Scholar 

  32. Schillinger, M., Mourat, K., Hartmann, B., Eckstein, C., Jacob, M., Kloppenburg, E., Nelles, O.: Modern online doe methods for calibration—constraint modeling, continuous boundary estimation, and active learning. In: Röpke, C., Gühmann, C. (eds.) Automotive Data Analytics, Methods and Design of Experiments (DOE). Expert, Tübingen (2017)

    Google Scholar 

  33. Schillinger, M., Hartmann, B., Jacob, M.: Dynamic safe active learning for calibration. In: Röpke, C., Gühmann, C. (eds.) International Conference on Calibration Methods and Automotive Data Analytics, pp. 258–277. Expert, Tübingen (2019)

    Google Scholar 

  34. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218

    Article  Google Scholar 

  35. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014). https://www.cse.huji.ac.il/shais/UnderstandingMachineLearning/

  36. Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967). https://doi.org/10.1016/0041-5553(67)90144-9

  37. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  38. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6

  39. Sobol, I.M., Asotsky, D., Kreinin, A., Kucherenko, S.: Construction and comparison of high-dimensional Sobol’ generators. Wilmott 2011(56), 64–79 (2011). https://doi.org/10.1002/wilm.10056

    Article  Google Scholar 

  40. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodological) 36(2), 111–133 (1974). https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

    Article  MathSciNet  MATH  Google Scholar 

  41. Vehtari, A., Tolvanen, V., Mononen, T., Winther, O.: Bayesian leave-one-out cross-validation approximations for gaussian latent variable models. J. Mach. Learn. Res. 17, 3581–3618 (2016). http://jmlr.org/papers/volume17/14-540/14-540.pdf

  42. Wasserburger, A., Hametner, C., Didcock, N.: Risk-averse real driving emissions optimization considering stochastic influences. Eng. Optimi. (2020). https://doi.org/10.1080/0305215X.2019.1569646

  43. Wintrich, T., Rothe, S., Bucher, K., Hitz, H.J.: Diesel injection system with closed-loop control. MTZ Worldwide 79(9), 54–59 (2018). https://doi.org/10.1007/s38313-018-0062-0

    Article  Google Scholar 

  44. Ying, X.: An overview of overfitting and its solutions. J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1168/2/022022

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jürgen Frick, Alexandra Fritsch, and Andre Wiedersberg, for their support while conducting the engine test bench measurements used for this work. The authors would also like to thank Robert Bosch GmbH for the resources provided to produce this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Mourat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourat, K., Eckstein, C. & Koch, T. Application of stochastic design optimization to a passenger car diesel engine to reduce emission spread in a vehicle fleet. Automot. Engine Technol. 6, 99–112 (2021). https://doi.org/10.1007/s41104-021-00077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-021-00077-2

Keywords

Navigation