Skip to main content

Advertisement

Log in

The Rise of MXene: A Wonder 2D Material, from Its Synthesis and Properties to Its Versatile Applications—A Comprehensive Review

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

MXene, a new member of 2D material, unites the eminence of hydrophilicity, large surface groups, superb flexibility and excellent conductivity. Because of its prodigious characteristics, MXene has gained much approbation among researchers worldwide. MXene’s noteworthy features, such as its electrical conductivity, structural property, magnetic behaviour, etc., manifest a broad spectrum of applications, including environment, catalytic, wireless communications, electromagnetic interference (EMI) shielding, drug delivery, wound dressing, bio-imaging, antimicrobial and biosensor. In this review article, an overview of the latest advancements in the applications of MXene has been reported. First, various synthesis strategies of MXene will be summarized, followed by the different structural, physical and chemical properties. The current advances in versatile applications have been discussed. The article aims to incorporate all the possible applications of MXene, making it a versatile material that juxtaposes it with other 2D materials. A separate section is dedicated to the bottlenecks for future developments and recommendations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from Naguib et al. [42] with permission from Wiley. B Molten salt etching. Reproduced from Li et al. [43] with permission from the American Chemical Society. C Electrochemical etching. Reproduced from Yang et al. [44] with permission from Wiley

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Reproduced from Xing et al. [209] with permission from ACS publications. b Graphical representation of the effect of temperature increase in different groups of cellulose hydrogel with drugs. Reproduced from Xing et al. [209] with permission from ACS publications. c Graphical representation of the state of tumour/tumour volume when treated with different compositions of cellulose hydrogel with drug and MXene (reproduced from Xing et al. [209] with permission from ACS Publication)

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

© 2018) [254]

Fig. 23

©, 2020, American Chemical Society ) [256]

Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The data supporting this study’s findings are openly available on the internet, as in the reference stated below. The authors confirm that the data and materials supporting the findings of this study are available within the article.

References

  1. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A et al (2014) Electronics based on two-dimensional materials. Nat Nanotechnol 9:768–779

    Article  CAS  PubMed  Google Scholar 

  2. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science (80–) 340:1226419

    Article  Google Scholar 

  3. Ferrari AC, Bonaccorso F, Fal’Ko V, Novoselov KS, Roche S, Bøggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810

    Article  CAS  PubMed  Google Scholar 

  4. Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5:1–12

    Article  Google Scholar 

  5. Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N (2015) Phonon hydrodynamics in two-dimensional materials. Nat Commun 6:1–7

    Article  Google Scholar 

  6. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photon 8:899–907

    Article  CAS  Google Scholar 

  7. Halim J, Kota S, Lukatskaya MR, Naguib M, Zhao M, Moon EJ et al (2016) Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater 26:3118–3127

    Article  CAS  Google Scholar 

  8. Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh PL et al (2016) Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8:11385–11391

    Article  CAS  PubMed  Google Scholar 

  9. Wallace TC, Butt DP (1996) Review of diffusion and vaporization of group 4 and 5 transition metal carbides. Transition metal carbides and nitrides. Springer, Berlin, pp 53–90

    Book  Google Scholar 

  10. Meshkian R, Dahlqvist M, Lu J, Wickman B, Halim J, Thörnberg J et al (2018) W-based atomic laminates and their 2D derivative W1. 33C MXene with vacancy ordering. Adv Mater 30:1706409

    Article  Google Scholar 

  11. Chen W, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT et al (2012) Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem Int Ed 51:6131–6135

    Article  CAS  Google Scholar 

  12. Choi D, Blomgren GE, Kumta PN (2006) Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 18:1178–1182

    Article  CAS  Google Scholar 

  13. Naguib M, Come J, Dyatkin B, Presser V, Taberna P-L, Simon P et al (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 16:61–64

    Article  CAS  Google Scholar 

  14. Xie Y, Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y, Yu X et al (2014) Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 136:6385–6394

    Article  CAS  PubMed  Google Scholar 

  15. Deysher G, Shuck CE, Hantanasirisakul K, Frey NC, Foucher AC, Maleski K et al (2019) Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14:204–217

    Article  PubMed  Google Scholar 

  16. Hong L, Guo R, Yuan Y, Ji X, Li Z, Lin Z et al (2020) Recent progress of two-dimensional MXenes in photocatalytic applications: a review. Mater Today Energy 18:100521

    Article  CAS  Google Scholar 

  17. Bai Y, Zhou K, Srikanth N, Pang JHL, He X, Wang R (2016) Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Adv 6:35731–35739

    Article  CAS  Google Scholar 

  18. Magne D, Mauchamp V, Célérier S, Chartier P, Cabioc’h T (2015) Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayer Ti3C2 MXene. Phys Rev B 91:201409

    Article  Google Scholar 

  19. Srivastava P, Mishra A, Mizuseki H, Lee K-R, Singh AK (2016) Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces 8:24256–24264

    Article  CAS  PubMed  Google Scholar 

  20. Lai S, Jeon J, Jang SK, Xu J, Choi YJ, Park J-H et al (2015) Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T:–OH,–F and–O). Nanoscale 7:19390–19396

    Article  CAS  PubMed  Google Scholar 

  21. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:1–17

    Article  Google Scholar 

  22. Chen Z, Xu C, Ma C, Ren W, Cheng H (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300

    Article  CAS  PubMed  Google Scholar 

  23. Iqbal A, Kwon J, Kim M-K, Koo CM (2021) MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater Today Adv 9:100124

    Article  CAS  Google Scholar 

  24. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA (2016) Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10:3674–3684

    Article  CAS  PubMed  Google Scholar 

  25. Huang R, Chen X, Dong Y, Zhang X, Wei Y, Yang Z et al (2020) MXene composite nanofibers for cell culture and tissue engineering. ACS Appl Bio Mater 3:2125–2131

    Article  CAS  PubMed  Google Scholar 

  26. Sang X, Xie Y, Lin MW, Alhabeb M, Van Aken KL, Gogotsi Y et al (2016) Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10:9193–9200. https://doi.org/10.1021/acsnano.6b05240

    Article  CAS  PubMed  Google Scholar 

  27. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  28. Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y et al (2013) New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries. J Am Chem Soc 135:15966–15969. https://doi.org/10.1021/ja405735d

    Article  CAS  PubMed  Google Scholar 

  29. Chang F, Li C, Yang J, Tang H, Xue M (2013) Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2. Mater Lett 109:295–298. https://doi.org/10.1016/j.matlet.2013.07.102

    Article  CAS  Google Scholar 

  30. Barsoum MW, Radovic M (2011) Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res 41:195–227

    Article  CAS  Google Scholar 

  31. Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan LM, Zhang B et al (2014) Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun 50:9517–9520

    Article  CAS  Google Scholar 

  32. Wang L, Zhang H, Wang B, Shen C, Zhang C, Hu Q et al (2016) Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett 12:702–710. https://doi.org/10.1007/s13391-016-6088-z

    Article  CAS  Google Scholar 

  33. Wang H, Peng R, Hood ZD, Naguib M, Adhikari SP, Wu Z (2016) MXene-TiO2 composites as novel photocatalysts for hydrogen production under visible light irradiation. ChemSusChem 9:1490–1497

    Article  CAS  PubMed  Google Scholar 

  34. Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Näslund LÅ et al (2014) Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 26:2374–2381. https://doi.org/10.1021/cm500641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li T, Yan X, Huang L, Li J, Yao L, Zhu Q et al (2019) Fluorine-free Ti3C2T: X (T = O, OH) nanosheets (∼ 50 to 100 nm) for nitrogen fixation under ambient conditions. J Mater Chem A 7:14462–14465. https://doi.org/10.1039/c9ta03254a

    Article  CAS  Google Scholar 

  36. Li Y, Tian X, Gao S, Jing L, Li K, Yang H et al (2020) Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv Funct Mater 30:1907451

    Article  CAS  Google Scholar 

  37. Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L, Haines B et al (2017) 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9:17722–17730. https://doi.org/10.1039/c7nr06721f

    Article  CAS  PubMed  Google Scholar 

  38. Fan Z, Wang Y, Xie Z, Wang D, Yuan Y, Kang H et al (2018) Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci 5:1800750

    Article  Google Scholar 

  39. Sun W, Shah SA, Chen Y, Tan Z, Gao H, Habib T et al (2017) Electrochemical etching of Ti2AlC to Ti2CT: X (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A 5:21663–21668. https://doi.org/10.1039/c7ta05574a

    Article  CAS  Google Scholar 

  40. Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, Blom PWM et al (2018) Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed 57:15491–15495. https://doi.org/10.1002/anie.201809662

    Article  CAS  Google Scholar 

  41. Pang SY, Wong YT, Yuan S, Liu Y, Tsang MK, Yang Z et al (2019) Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc 141:9610–9616. https://doi.org/10.1021/jacs.9b02578

    Article  CAS  PubMed  Google Scholar 

  42. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Lu J, Luo K, Li Y, Chang K, Chen K et al (2019) Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc 141:4730–4737. https://doi.org/10.1021/jacs.9b00574

    Article  CAS  PubMed  Google Scholar 

  44. Yang X, Gao N, Zhou S, Zhao J (2018) MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Phys Chem Chem Phys 20:19390–19397

    Article  CAS  PubMed  Google Scholar 

  45. Xie Y, Kent PRC (2013) Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers. Phys Rev B 87:235441

    Article  Google Scholar 

  46. Hu T, Wang J, Zhang H, Li Z, Hu M, Wang X (2015) Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys Chem Chem Phys 17:9997–10003

    Article  CAS  PubMed  Google Scholar 

  47. Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer. J Am Chem Soc 134:16909–16916

    Article  CAS  PubMed  Google Scholar 

  48. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature 516:78–81

    Article  CAS  PubMed  Google Scholar 

  49. Lashgari H, Abolhassani MR, Boochani A, Elahi SM, Khodadadi J (2014) Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Commun 195:61–69

    Article  CAS  Google Scholar 

  50. Wang S, Li J-X, Du Y-L, Cui C (2014) First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer. Comput Mater Sci 83:290–293

    Article  CAS  Google Scholar 

  51. Enyashin AN, Ivanovskii AL (2013) Two-dimensional titanium carbonitrides and their hydroxylated derivatives: structural, electronic properties and stability of MXenes Ti3C2−xNx (OH) 2 from DFTB calculations. J Solid State Chem 207:42–48

    Article  CAS  Google Scholar 

  52. Zhao S, Kang W, Xue J (2014) Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl Phys Lett 104:133106

    Article  Google Scholar 

  53. Lee Y, Hwang Y, Cho SB, Chung Y-C (2014) Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field. Phys Chem Chem Phys 16:26273–26278

    Article  CAS  PubMed  Google Scholar 

  54. Khazaei M, Arai M, Sasaki T, Chung C, Venkataramanan NS, Estili M et al (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater 23:2185–2192

    Article  CAS  Google Scholar 

  55. Michael J, Qifeng Z, Danling W (2019) Titanium carbide MXene: synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomater Nanotechnol 9:1847980418824470

    Article  CAS  Google Scholar 

  56. Lee C-L, Cheng C-Y, Su H-C (2014) Enhancing device efficiencies of solid-state near-infrared light-emitting electrochemical cells by employing a tandem device structure. Org Electron 15:711–720

    Article  CAS  Google Scholar 

  57. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005

    Article  CAS  PubMed  Google Scholar 

  58. Ghassemi H, Harlow W, Mashtalir O, Beidaghi M, Lukatskaya MR, Gogotsi Y et al (2014) In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem A 2:14339–14343

    Article  CAS  Google Scholar 

  59. Li K, Liang M, Wang H, Wang X, Huang Y, Coelho J et al (2020) 3D MXene architectures for efficient energy storage and conversion. Adv Funct Mater 30:2000842

    Article  CAS  Google Scholar 

  60. Shein IR, Ivanovskii AL (2013) Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation. Micro Nano Lett 8:59–62. https://doi.org/10.1049/mnl.2012.0797

    Article  CAS  Google Scholar 

  61. Laws EA (2017) Aquatic pollution: an introductory text, 4th ed

  62. Jin X, Yu C, Li Y, Qi Y, Yang L, Zhao G et al (2011) Preparation of novel nano-adsorbent based on organic–inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment. J Hazard Mater 186:1672–1680

    Article  CAS  PubMed  Google Scholar 

  63. Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean-Soil Air Water 43:479–489

    Article  CAS  Google Scholar 

  64. Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63

    Article  CAS  PubMed  Google Scholar 

  65. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  66. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24

    Article  CAS  Google Scholar 

  67. Matilainen A, Vepsäläinen M, Sillanpää M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci 159:189–197

    Article  CAS  PubMed  Google Scholar 

  68. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  69. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  70. Huang Q, Liu M, Mao L, Xu D, Zeng G, Huang H et al (2017) Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: characterization and enhanced removal of organic dye. J Colloid Interface Sci 499:170–179

    Article  CAS  PubMed  Google Scholar 

  71. Zhang X, Fang X, Feng X, Li X, Liu W, Xu X et al (2017) Ni/Ln2Zr2O7 (Ln = La, Pr, Sm and Y) catalysts for methane steam reforming: the effects of A site replacement. Catal Sci Technol 7:2729–2743

    Article  CAS  Google Scholar 

  72. Zeng G, Huang L, Huang Q, Liu M, Xu D, Huang H et al (2018) Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. Appl Surf Sci 459:588–595

    Article  CAS  Google Scholar 

  73. Huang Q, Liu M, Chen J, Wang K, Xu D, Deng F et al (2016) Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications. Appl Surf Sci 387:285–293

    Article  CAS  Google Scholar 

  74. Huang Q, Liu M, Zhao J, Chen J, Zeng G, Huang H et al (2018) Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal. Appl Surf Sci 427:535–544

    Article  CAS  Google Scholar 

  75. Huang Q, Zhao J, Liu M, Chen J, Zhu X, Wu T et al (2018) Preparation of polyethylene polyamine@ tannic acid encapsulated MgAl-layered double hydroxide for the efficient removal of copper (II) ions from aqueous solution. J Taiwan Inst Chem Eng 82:92–101

    Article  CAS  Google Scholar 

  76. Huang Q, Zhao J, Liu M, Li Y, Ruan J, Li Q et al (2018) Synthesis of polyacrylamide immobilized molybdenum disulfide (MoS2@ PDA@ PAM) composites via mussel-inspired chemistry and surface-initiated atom transfer radical polymerization for removal of copper (II) ions. J Taiwan Inst Chem Eng 86:174–184

    Article  CAS  Google Scholar 

  77. Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  CAS  PubMed  Google Scholar 

  78. Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167:1–9

    Article  CAS  PubMed  Google Scholar 

  79. Ng VMH, Huang H, Zhou K, Lee PS, Que W, Xu JZ et al (2017) Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A 5:3039–3068

    Article  Google Scholar 

  80. Zhu J, Ha E, Zhao G, Zhou Y, Huang D, Yue G et al (2017) Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord Chem Rev 352:306–327

    Article  CAS  Google Scholar 

  81. Miao J, Lang Z, Zhang X, Kong W, Peng O, Yang Y et al (2018) Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater. Adv Funct Mater 1805893:1–9. https://doi.org/10.1002/adfm.201805893

    Article  CAS  Google Scholar 

  82. Sinha A, Zhao H, Huang Y, Lu X, Chen J, Jain R (2018) MXene: an emerging material for sensing and biosensing. TrAC Trends Anal Chem 105:424–435

    Article  CAS  Google Scholar 

  83. Lei Y, Cui Y, Huang Q, Dou J, Gan D, Deng F et al (2019) Facile preparation of sulfonic groups functionalized MXenes for efficient removal of methylene blue. Ceram Int 45:17653–17661

    Article  CAS  Google Scholar 

  84. Wang S, Sun H, Ang H-M, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347

    Article  CAS  Google Scholar 

  85. Morales-García Á, Fernández-Fernández A, Viñes F, Illas F (2018) CO2 abatement using two-dimensional MXene carbides. J Mater Chem A 6:3381–3385

    Article  Google Scholar 

  86. Persson I, Halim J, Lind H, Hansen TW, Wagner JB, Näslund L et al (2019) 2D transition metal carbides (MXenes) for carbon capture. Adv Mater 31:1805472

    Article  Google Scholar 

  87. Low J, Zhang L, Tong T, Shen B, Yu J (2018) TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 361:255–266

    Article  CAS  Google Scholar 

  88. Chen Y-Y, Lin Q, Zhang Y-M, Yao H, Wei T-B, Fan Y-Q et al (2019) Rationally introduce AIE into chemosensor: a novel and efficient way to achieving ultrasensitive multi-guest sensing. Spectrochim Acta Part A Mol Biomol Spectrosc 218:263–270

    Article  CAS  Google Scholar 

  89. Ma S, Yuan D, Jiao Z, Wang T, Dai X (2017) Monolayer Sc2CO2: a promising candidate as a SO2 gas sensor or capturer. J Phys Chem C 121:24077–24084

    Article  CAS  Google Scholar 

  90. Yu X, Li Y, Cheng J, Liu Z, Li Q, Li W et al (2015) Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 7:13707–13713

    Article  CAS  PubMed  Google Scholar 

  91. Yadav A, Dashora A, Patel N, Miotello A, Press M, Kothari DC (2016) Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. Appl Surf Sci 389:88–95

    Article  CAS  Google Scholar 

  92. Liu F, Zhou A, Chen J, Jia J, Zhou W, Wang L et al (2017) Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci 416:781–789

    Article  CAS  Google Scholar 

  93. Kim SJ, Koh H-J, Ren CE, Kwon O, Maleski K, Cho S-Y et al (2018) Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12:986–993

    Article  CAS  PubMed  Google Scholar 

  94. Li N, Chen X, Ong WJ, Macfarlane DR, Zhao X, Cheetham AK et al (2017) Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11:10825–10833. https://doi.org/10.1021/acsnano.7b03738

    Article  CAS  PubMed  Google Scholar 

  95. Chen J, Huang Q, Huang H, Mao L, Liu M, Zhang X et al (2020) Recent progress and advances in the environmental applications of MXene related materials. Nanoscale 12:3574–3592

    Article  CAS  PubMed  Google Scholar 

  96. Liu F, Zhou A, Chen J, Zhang H, Cao J, Wang L et al (2016) Preparation and methane adsorption of two-dimensional carbide Ti2C. Adsorption 22:915–922

    Article  CAS  Google Scholar 

  97. Gao X, Li Z-K, Xue J, Qian Y, Zhang L-Z, Caro J et al (2019) Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. J Memb Sci 586:162–169

    Article  CAS  Google Scholar 

  98. Li K, Zou G, Jiao T, Xing R, Zhang L, Zhou J et al (2018) Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids Surf A Physicochem Eng Asp 553:105–113

    Article  CAS  Google Scholar 

  99. Peng C, Wei P, Chen X, Zhang Y, Zhu F, Cao Y et al (2018) A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance. Ceram Int 44:18886–18893

    Article  CAS  Google Scholar 

  100. Kuriki R, Matsunaga H, Nakashima T, Wada K, Yamakata A, Ishitani O et al (2016) Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium (II) complex and an organic semiconductor using visible light. J Am Chem Soc 138:5159–5170

    Article  CAS  PubMed  Google Scholar 

  101. Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26:4607–4626

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Y, Wang L, Zhang N, Zhou Z (2018) Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv 8:19895–19905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tröstl J, Chuang WK, Gordon H, Heinritzi M, Yan C, Molteni U et al (2016) The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533:527–531

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ibrahim Y, Meslam M, Eid K, Salah B, Abdullah AM, Ozoemena KI et al (2022) A review of MXenes as emergent materials for dye removal from wastewater. Sep Purif Technol 282:120083

    Article  CAS  Google Scholar 

  105. Wei Z, Peigen Z, Wubian T, Xia Q, Yamei Z, ZhengMing S (2018) Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater Chem Phys 206:270–276

    Article  CAS  Google Scholar 

  106. Gan W, Shang X, Li X-H, Zhang J, Fu X (2019) Achieving high adsorption capacity and ultrafast removal of methylene blue and Pb2+ by graphene-like TiO2@ C. Colloids Surf A Physicochem Eng Asp 561:218–225

    Article  CAS  Google Scholar 

  107. Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q et al (2015) EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10

    Article  CAS  Google Scholar 

  108. Jiang M, Jin X, Lu X-Q, Chen Z (2010) Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination 252:33–39

    Article  CAS  Google Scholar 

  109. Cheng X, Zu L, Jiang Y, Shi D, Cai X, Ni Y et al (2018) A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2–x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem Commun 54:11622–11625

    Article  CAS  Google Scholar 

  110. Liu C, Xu Q, Zhang Q, Zhu Y, Ji M, Tong Z et al (2019) Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J Mater Sci 54:2458–2471

    Article  CAS  Google Scholar 

  111. Gao Y, Chen H, Zhou A, Li Z, Liu F, Hu Q et al (2015) Novel hierarchical TiO2/C nanocomposite with enhanced photocatalytic performance. NANO 10:1550064

    Article  CAS  Google Scholar 

  112. Lian W, Wang L, Wang X, Shen C, Zhou A, Hu Q (2019) Facile preparation of BiOCl/Ti3C2 hybrid photocatalyst with enhanced visible-light photocatalytic activity. Funct Mater Lett 12:1850100

    Article  CAS  Google Scholar 

  113. Gao Y, Wang L, Zhou A, Li Z, Chen J, Bala H et al (2015) Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater Lett 150:62–64

    Article  CAS  Google Scholar 

  114. Wang L, Song H, Yuan L, Li Z, Zhang Y, Gibson JK et al (2018) Efficient U (VI) reduction and sequestration by Ti2CTx MXene. Environ Sci Technol 52:10748–10756

    Article  CAS  PubMed  Google Scholar 

  115. Luo S, Wang R, Yin J, Jiao T, Chen K, Zou G et al (2019) Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 4:3946–3953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y (2014) Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A 2:14334–14338

    Article  CAS  Google Scholar 

  117. Tariq A, Ali SI, Akinwande D, Rizwan S (2018) Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd3+-and Sn4+-codoped bismuth ferrite. ACS Omega 3:13828–13836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gu P, Xing J, Wen T, Zhang R, Wang J, Zhao G et al (2018) Experimental and theoretical calculation investigation on efficient Pb (II) adsorption on etched Ti3AlC2 nanofibers and nanosheets. Environ Sci Nano 5:946–955

    Article  CAS  Google Scholar 

  119. Fu L, Yan Z, Zhao Q, Yang H (2018) Novel 2D nanosheets with potential applications in heavy metal purification: a review. Adv Mater Interfaces 5:1801094

    Article  Google Scholar 

  120. Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D et al (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    Article  CAS  PubMed  Google Scholar 

  121. Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A et al (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 136:4113–4116

    Article  CAS  PubMed  Google Scholar 

  122. Guo J, Fu H, Zou G, Zhang Q, Zhang Z, Peng Q (2016) Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. J Alloys Compd 684:504–509

    Article  CAS  Google Scholar 

  123. Ying Y, Liu Y, Wang X, Mao Y, Cao W, Hu P et al (2015) Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water. ACS Appl Mater Interfaces 7:1795–1803

    Article  CAS  PubMed  Google Scholar 

  124. Du Y, Yu B, Wei L, Wang Y, Zhang X, Ye S (2019) Efficient removal of Pb (II) by Ti3C2Tx powder modified with a silane coupling agent. J Mater Sci 54:13283–13297

    Article  CAS  Google Scholar 

  125. Wang L, Song H, Yuan L, Li Z, Zhang P, Gibson JK et al (2019) Effective removal of anionic Re (VII) by surface-modified Ti2CTx MXene nanocomposites: implications for Tc (VII) sequestration. Environ Sci Technol 53:3739–3747

    Article  CAS  PubMed  Google Scholar 

  126. Deng Y, Shang T, Wu Z, Tao Y, Luo C, Liang J et al (2019) Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv Mater 31:1902432

    Article  CAS  Google Scholar 

  127. Mu W, Du S, Li X, Yu Q, Wei H, Yang Y et al (2019) Removal of radioactive palladium based on novel 2D titanium carbides. Chem Eng J 358:283–290

    Article  CAS  Google Scholar 

  128. Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud KA et al (2017) Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain Chem Eng 5:11481–11488

    Article  CAS  Google Scholar 

  129. Shahzad A, Nawaz M, Moztahida M, Tahir K, Kim J, Lim Y et al (2019) Exfoliation of titanium aluminum carbide (211 MAX phase) to form nanofibers and two-dimensional nanosheets and their application in aqueous-phase cadmium sequestration. ACS Appl Mater Interfaces 11:19156–19166

    Article  CAS  PubMed  Google Scholar 

  130. Mu W, Du S, Yu Q, Li X, Wei H, Yang Y (2018) Improving barium ion adsorption on two-dimensional titanium carbide by surface modification. Dalt Trans 47:8375–8381

    Article  CAS  Google Scholar 

  131. Fard AK, Mckay G, Chamoun R, Rhadfi T, Preud Homme H, Atieh MA (2017) Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem Eng J 317:331–342

    Article  CAS  Google Scholar 

  132. Li S, Wang L, Peng J, Zhai M, Shi W (2019) Efficient thorium (IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem Eng J 366:192–199

    Article  CAS  Google Scholar 

  133. Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S et al (2016) Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl Mater Interfaces 8:16396–16403

    Article  CAS  PubMed  Google Scholar 

  134. Wang H, Lustig WP, Li J (2018) Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chem Soc Rev 47:4729–4756

    Article  CAS  PubMed  Google Scholar 

  135. Wu Z, Li C, Li Z, Feng K, Cai M, Zhang D et al (2021) Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 15:5696–5705

    Article  CAS  PubMed  Google Scholar 

  136. Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y (2015) Charge-and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett 6:4026–4031

    Article  CAS  PubMed  Google Scholar 

  137. Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K et al (2018) 2D MXene nanofilms with tunable gas transport channels. Adv Funct Mater 28:1801511

    Article  Google Scholar 

  138. Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR et al (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1:589–594

    Article  CAS  Google Scholar 

  139. Ling C, Shi L, Ouyang Y, Chen Q, Wang J (2016) Transition metal-promoted V2CO2 (MXenes): a new and highly active catalyst for hydrogen evolution reaction. Adv Sci 3:1–7. https://doi.org/10.1002/advs.201600180

    Article  CAS  Google Scholar 

  140. Jia J, Xiong T, Zhao L, Wang F, Liu H, Hu R et al (2017) Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11:12509–12518. https://doi.org/10.1021/acsnano.7b06607

    Article  CAS  PubMed  Google Scholar 

  141. Zang X, Chen W, Zou X, Hohman JN, Yang L, Li B et al (2018) Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv Mater 30:1–8. https://doi.org/10.1002/adma.201805188

    Article  CAS  Google Scholar 

  142. Tran MH, Schäfer T, Shahraei A, Dürrschnabel M, Molina-Luna L, Kramm UI et al (2018) Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx. ACS Appl Energy Mater 1:3908–3914. https://doi.org/10.1021/acsaem.8b00652

    Article  CAS  Google Scholar 

  143. Du CF, Dinh KN, Liang Q, Zheng Y, Luo Y, Zhang J et al (2018) Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv Energy Mater 8:1–9. https://doi.org/10.1002/aenm.201801127

    Article  CAS  Google Scholar 

  144. Ling C, Shi L, Ouyang Y, Wang J (2016) Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater 28:9026–9032. https://doi.org/10.1021/acs.chemmater.6b03972

    Article  CAS  Google Scholar 

  145. Gao G, O’Mullane AP, Du A (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500. https://doi.org/10.1021/acscatal.6b02754

    Article  CAS  Google Scholar 

  146. Cheng YW, Dai JH, Zhang YM, Song Y (2018) Two-dimensional, ordered, double transition metal carbides (MXenes): a new family of promising catalysts for the hydrogen evolution reaction. J Phys Chem C 122:28113–28122. https://doi.org/10.1021/acs.jpcc.8b08914

    Article  CAS  Google Scholar 

  147. Zhou S, Yang X, Pei W, Liu N, Zhao J (2018) Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 10:10876–10883. https://doi.org/10.1039/c8nr01090k

    Article  CAS  PubMed  Google Scholar 

  148. Attanayake NH, Abeyweera SC, Thenuwara AC, Anasori B, Gogotsi Y, Sun Y et al (2018) Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst. J Mater Chem A 6:16882–16889. https://doi.org/10.1039/c8ta05033c

    Article  CAS  Google Scholar 

  149. Lee M, Choi M, Song W, Im J, Zyung T, Jung H et al (2018). Mater Chem A. https://doi.org/10.1039/C8TA08197B

    Article  Google Scholar 

  150. Li Z, Qi Z, Wang S, Ma T, Zhou L, Wu Z et al (2019) In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett 19:5102–5108. https://doi.org/10.1021/acs.nanolett.9b01381

    Article  CAS  PubMed  Google Scholar 

  151. Yi Z, Feng L, Ying H (2016) Ar plasma modification of MXene Ti3C2Tx nanosheets for efficient capacitive desalination. FlatChem 1:1–13

    Google Scholar 

  152. Zou H, He B, Kuang P, Yu J, Fan K (2018) Metal-organic framework-derived nickel-cobalt sulfide on ultrathin MXene nanosheets for electrocatalytic oxygen evolution. ACS Appl Mater Interfaces 10:22311–22319. https://doi.org/10.1021/acsami.8b06272

    Article  CAS  PubMed  Google Scholar 

  153. Li N, Wei S, Xu Y, Liu J, Wu J, Jia G et al (2018) Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochim Acta 290:364–368. https://doi.org/10.1016/j.electacta.2018.09.098

    Article  CAS  Google Scholar 

  154. Liu J, Chen T, Juan P, Peng W, Li Y, Zhang F et al (2018) Hierarchical cobalt borate/MXenes hybrid with extraordinary electrocatalytic performance in oxygen evolution reaction. ChemSusChem 11:3758–3765. https://doi.org/10.1002/cssc.201802098

    Article  CAS  PubMed  Google Scholar 

  155. Yu M, Zhou S, Wang Z, Zhao J, Qiu J (2018) Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44:181–190. https://doi.org/10.1016/j.nanoen.2017.12.003

    Article  CAS  Google Scholar 

  156. Xue Q, Pei Z, Huang Y, Zhu M, Tang Z, Li H et al (2017) Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J Mater Chem A 5:20818–20823. https://doi.org/10.1039/c7ta04532h

    Article  CAS  Google Scholar 

  157. Li Z, Zhuang Z, Lv F, Zhu H, Zhou L, Luo M et al (2018) The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3D electron delocalization matters. Adv Mater 30:1–8. https://doi.org/10.1002/adma.201803220

    Article  CAS  Google Scholar 

  158. Handoko AD, Khoo KH, Tan TL, Jin H, Seh ZW (2018) Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. J Mater Chem A 6:21885–21890. https://doi.org/10.1039/c8ta06567e

    Article  CAS  Google Scholar 

  159. Chen H, Handoko AD, Wang T, Qu J, Xiao J, Liu X et al (2020) Defect-enhanced CO2 reduction catalytic performance in O-terminated MXenes. ChemSusChem 13:5690–5698. https://doi.org/10.1002/cssc.202001624

    Article  CAS  PubMed  Google Scholar 

  160. Handoko AD, Chen H, Lum Y, Zhang Q, Anasori B, Seh ZW (2020) Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. iScience 23:101181. https://doi.org/10.1016/j.isci.2020.101181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kannan K, Sliem MH, Abdullah AM, Sadasivuni KK, Kumar B (2020) Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts 10:1–15. https://doi.org/10.3390/catal10050549

    Article  CAS  Google Scholar 

  162. Attanayake NH, Banjade HR, Thenuwara AC, Anasori B, Yan Q, Strongin DR (2021) Electrocatalytic CO2 reduction on earth abundant 2D Mo2C and Ti3C2MXenes. Chem Commun 57:1675–1678. https://doi.org/10.1039/d0cc05822j

    Article  CAS  Google Scholar 

  163. Liang X, Ren X, Yang Q, Gao L, Gao M, Yang Y et al (2021) A two-dimensional MXene-supported metal-organic framework for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale 13:2843–2848. https://doi.org/10.1039/d0nr08744k

    Article  CAS  PubMed  Google Scholar 

  164. Li H, Wei S, Wang H, Cai Q, Zhao J (2021) Enhanced catalytic activity of MXene for nitrogen electoreduction reaction by carbon doping. J Colloid Interface Sci 588:1–8. https://doi.org/10.1016/j.jcis.2020.12.034

    Article  CAS  PubMed  Google Scholar 

  165. Chu K, Li X, Li Q, Guo Y, Zhang H (2021) Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 17:1–8. https://doi.org/10.1002/smll.202102363

    Article  CAS  Google Scholar 

  166. Du CF, Yang L, Tang K, Fang W, Zhao X, Liang Q et al (2021) Ni nanoparticles/V4C3TxMXene heterostructures for electrocatalytic nitrogen fixation. Mater Chem Front 5:2338–2346. https://doi.org/10.1039/d0qm00898b

    Article  CAS  Google Scholar 

  167. Esmaeilirad M, Baskin A, Kondori A, Sanz-Matias A, Qian J, Song B et al (2021) Gold-like activity copper-like selectivity of heteroatomic transition metal carbides for electrocatalytic carbon dioxide reduction reaction. Nat Commun 12:1–10. https://doi.org/10.1038/s41467-021-25295-y

    Article  CAS  Google Scholar 

  168. Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:1–10. https://doi.org/10.1038/ncomms13907

    Article  CAS  Google Scholar 

  169. Shao M, Yang M, Shao Y, Chai J, Qu Y, Yang M et al (2017) Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J Mater Chem A 5:16748–16756. https://doi.org/10.1039/c7ta04122e

    Article  CAS  Google Scholar 

  170. Sun Y, Jin D, Sun Y, Meng X, Gao Y, Dall’Agnese Y et al (2018) G-C3N4/Ti3C2TX (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J Mater Chem A 6:9124–9131. https://doi.org/10.1039/c8ta02706d

    Article  CAS  Google Scholar 

  171. Su T, Peng R, Hood ZD, Naguib M, Ivanov IN, Keum JK et al (2018) One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 11:688–699. https://doi.org/10.1002/cssc.201702317

    Article  CAS  PubMed  Google Scholar 

  172. Cao S, Shen B, Tong T, Fu J, Yu J (2018) 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater 28:1–11. https://doi.org/10.1002/adfm.201800136

    Article  CAS  Google Scholar 

  173. Tang Q, Sun Z, Deng S, Wang H, Wu Z (2020) Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J Colloid Interface Sci 564:406–417. https://doi.org/10.1016/j.jcis.2019.12.091

    Article  CAS  PubMed  Google Scholar 

  174. Ye M, Wang X, Liu E, Ye J, Wang D (2018) Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem 11:1606–1611

    Article  CAS  PubMed  Google Scholar 

  175. Thanh Q, Ta H, Tran NM, Noh J (2020) Rice crust-like ZnO/Ti3C2 T

  176. Wang H, Wu Y, Xiao T, Yuan X, Zeng G, Tu W et al (2018) Formation of quasi-core-shell In2S3/anatase TiO2@ metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl Catal B Environ 233:213–225

    Article  Google Scholar 

  177. Verma S, Dwivedi U, Chaturvedi K, Kumari N, Dhangar M, Hashmi SAR et al (2022) Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: a review. Synth Methods 287:117095. https://doi.org/10.1016/j.synthmet.2022.117095

    Article  CAS  Google Scholar 

  178. Cao W-T, Chen F-F, Zhu Y-J, Zhang Y-G, Jiang Y-Y, Ma M-G et al (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12:4583–4593

    Article  CAS  PubMed  Google Scholar 

  179. Xiang C, Guo R, Lin S, Jiang S, Lan J, Wang C et al (2019) Lightweight and ultrathin TiO2-Ti3C2TX/graphene film with electromagnetic interference shielding. Chem Eng J 360:1158–1166

    Article  CAS  Google Scholar 

  180. Raagulan K, Braveenth R, Jang HJ, Seon Lee Y, Yang C-M, Mi Kim B et al (2018) Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials (Basel) 11:1803

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cao W, Ma C, Tan S, Ma M, Wan P, Chen F (2019) Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett 11:1–17

    Article  CAS  Google Scholar 

  182. Wang S, Li D, Jiang L (2019) Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv Mater Interfaces 6:1900961

    Article  CAS  Google Scholar 

  183. Li X, Yin X, Song C, Han M, Xu H, Duan W et al (2018) Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater 28:1803938

    Article  Google Scholar 

  184. Liang L, Han G, Li Y, Zhao B, Zhou B, Feng Y et al (2019) Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces 11:25399–25409

    Article  CAS  PubMed  Google Scholar 

  185. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science (80–) 353:1137–1140

    Article  CAS  Google Scholar 

  186. Miao M, Liu R, Thaiboonrod S, Shi L, Cao S, Zhang J et al (2020) Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding. J Mater Chem C 8:3120–3126

    Article  CAS  Google Scholar 

  187. Xie F, Jia F, Zhuo L, Lu Z, Si L, Huang J et al (2019) Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11:23382–23391

    Article  CAS  PubMed  Google Scholar 

  188. He P, Cao M-S, Cai Y-Z, Shu J-C, Cao W-Q, Yuan J (2020) Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon N Y 157:80–89

    Article  CAS  Google Scholar 

  189. Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H et al (2019) Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos Part B Eng 171:111–118

    Article  CAS  Google Scholar 

  190. Liu R, Miao M, Li Y, Zhang J, Cao S, Feng X (2018) Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl Mater Interfaces 10:44787–44795

    Article  CAS  PubMed  Google Scholar 

  191. Zhou Q, Qian K, Fang J, Miao M, Cao S, Feng X (2020) UV-light modulated Ti3C2Tx MXene/g-C3N4 heterojunction film for electromagnetic interference shielding. Compos Part A Appl Sci Manuf 134:105899

    Article  CAS  Google Scholar 

  192. Lu S, Li B, Ma K, Wang S, Liu X, Ma Z et al (2020) Flexible MXene/EPDM rubber with excellent thermal conductivity and electromagnetic interference performance. Appl Phys A 126:1–12

    Article  Google Scholar 

  193. Xu H, Yin X, Li X, Li M, Liang S, Zhang L et al (2019) Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interfaces 11:10198–10207

    Article  CAS  PubMed  Google Scholar 

  194. Nguyen V-T, Min BK, Yi Y, Kim SJ, Choi C-G (2020) MXene (Ti3C2TX)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem Eng J 393:124608

    Article  CAS  Google Scholar 

  195. Liu Z, Wang W, Tan J, Liu J, Zhu M, Zhu B et al (2020) Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J Mater Chem C 8:7170–7180

    Article  CAS  Google Scholar 

  196. Li L, Zhao S, Luo X-J, Zhang H-B, Yu Z-Z (2021) Smart MXene-based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon N Y 175:594–602

    Article  CAS  Google Scholar 

  197. Wang Q, Zhang H, Liu J, Zhao S, Xie X, Liu L et al (2019) Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv Funct Mater 29:1806819

    Article  Google Scholar 

  198. Ma C, Liu T, Xin W, Xi G-Q, Ma M-G (2019) Breathable and wearable MXene-decorated air-laid paper with superior folding endurance and electromagnetic interference-shielding performances. Front Mater 6:308

    Article  Google Scholar 

  199. Pan S, Yin J, Yu L, Zhang C, Zhu Y, Gao Y et al (2020) 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv Sci 7:1901511

    Article  CAS  Google Scholar 

  200. Yang W, Lyu Q, Zhao J, Cao L, Hao Y, Zhang H (2020) Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Sci China Mater 63:2397–2428

    Article  CAS  Google Scholar 

  201. Han X, Jing X, Yang D, Lin H, Wang Z, Ran H et al (2018) Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 8:4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H et al (2021) Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomater Sci 9:5437–5471

    Article  CAS  PubMed  Google Scholar 

  203. Wang W, Feng H, Liu J, Zhang M, Liu S, Feng C et al (2020) A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem Eng J 386:124116

    Article  CAS  Google Scholar 

  204. Huang K, Li Z, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47:5109–5124

    Article  CAS  PubMed  Google Scholar 

  205. Lin H, Wang Y, Gao S, Chen Y, Shi J (2018) Theranostic 2D tantalum carbide (MXene). Adv Mater 30:1703284

    Article  Google Scholar 

  206. Lin H, Gao S, Dai C, Chen Y, Shi J (2017) A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 139:16235–16247

    Article  CAS  PubMed  Google Scholar 

  207. Zeng X, Tao W, Mei L, Huang L, Tan C, Feng S-S (2013) Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34:6058–6067

    Article  CAS  PubMed  Google Scholar 

  208. Han X, Huang J, Lin H, Wang Z, Li P, Chen Y (2018) 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv Healthc Mater 7:1701394

    Article  Google Scholar 

  209. Xing C, Chen S, Liang X, Liu Q, Qu M, Zou Q et al (2018) Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl Mater Interfaces 10:27631–27643

    Article  CAS  PubMed  Google Scholar 

  210. Liu Y, Han Q, Yang W, Gan X, Yang Y, Xie K et al (2020) Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Mater Sci Eng C 116:111212

    Article  CAS  Google Scholar 

  211. Mahmoudi S, Mancini E, Xu L, Moore A, Jahanbani F, Hebestreit K et al (2019) Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 574:553–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tetley RJ, Staddon MF, Heller D, Hoppe A, Banerjee S, Mao Y (2019) Tissue fluidity promotes epithelial wound healing. Nat Phys 15:1195–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhao X, Vashisth A, Blivin JW, Tan Z, Holta DE, Kotasthane V et al (2020) pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv Mater Interfaces 7:2000845

    Article  CAS  Google Scholar 

  214. Hou R, Wu L, Wang J, Yang Z, Tu Q, Zhang X et al (2019) Surface-degradable drug-eluting stent with anticoagulation, antiproliferation, and endothelialization functions. Biomolecules 9:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang X, Jin J, Hou R, Zhou M, Mou X, Xu K et al (2019) Differentiation of bMSCs on biocompatible, biodegradable, and biomimetic scaffolds for largely defected tissue repair. ACS Appl Bio Mater 3:735–746

    Article  Google Scholar 

  216. Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N et al (2020) In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc Natl Acad Sci USA 117:28667–28677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cui T, Yu J, Li Q, Wang C, Chen S, Li W et al (2020) Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv Mater 32:2000982

    Article  CAS  Google Scholar 

  218. Srifa W, Kosaric N, Amorin A, Jadi O, Park Y, Mantri S et al (2020) Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice. Nat Commun 11:1–14

    Article  Google Scholar 

  219. Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L et al (2020) Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv Healthc Mater 9:2000872

    Article  CAS  Google Scholar 

  220. Jin L, Guo X, Gao D, Wu C, Hu B, Tan G et al (2021) NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater 13:1–9

    Article  Google Scholar 

  221. Mayerberger EA, Street RM, McDaniel RM, Barsoum MW, Schauer CL (2018) Antibacterial properties of electrospun Ti 3 C 2 T z (MXene)/chitosan nanofibers. RSC Adv 8:35386–35394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F et al (2021) Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano 15:2468–2480

    Article  CAS  PubMed  Google Scholar 

  223. Sun L, Fan L, Bian F, Chen G, Wang Y, Zhao Y (2021) MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research 20:21

    Google Scholar 

  224. Xu X, Wang S, Wu H, Liu Y, Xu F, Zhao J (2021) A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids Surfaces B Biointerfaces 207:111979

    Article  CAS  PubMed  Google Scholar 

  225. Lin H, Chen Y, Shi J (2018) Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci 5:1800518

    Article  Google Scholar 

  226. Xie Z, Chen S, Duo Y, Zhu Y, Fan T, Zou Q et al (2019) Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl Mater Interfaces 11:22129–22140

    Article  CAS  PubMed  Google Scholar 

  227. Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q et al (2017) Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces 9:40077–40086

    Article  CAS  PubMed  Google Scholar 

  228. Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z et al (2017) Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29:1604847

    Article  Google Scholar 

  229. Shao B, Liu Z, Zeng G, Wang H, Liang Q, He Q et al (2020) Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A 8:7508–7535

    Article  CAS  Google Scholar 

  230. Wang X, Yan P, Li Y, An G, Yao X, Li G (2017) Highly efficient white-light emission and UV–visible/NIR luminescence sensing of lanthanide metal–organic frameworks. Cryst Growth Des 17:2178–2185

    Article  CAS  Google Scholar 

  231. Kamalian S, Lev MH, Pomerantz SR (2017) Dual-energy computed tomography angiography of the head and neck and related applications. Neuroimaging Clin 27:429–443

    Article  Google Scholar 

  232. Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113:1641–1666

    Article  CAS  PubMed  Google Scholar 

  233. Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H (2017) A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed 56:1825–1829

    Article  CAS  Google Scholar 

  234. Dai X, Sivasubramanian K, Xing L (2019) High spatial resolution X-ray luminescence computed tomography and X-ray fluorescence computed tomography. Mol Surg Mol Devices Appl 10862:144–154

    Google Scholar 

  235. Liu Z, Lin H, Zhao M, Dai C, Zhang S, Peng W et al (2018) 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics 8:1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Beard P (2011) Biomedical photoacoustic imaging. Interface Focus 1:602–631

    Article  PubMed  PubMed Central  Google Scholar 

  237. Xia J, Kim CF, Lovell J (2015) Opportunities for photoacoustic-guided drug delivery. Curr Drug Targets 16:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Dai C, Lin H, Xu G, Liu Z, Wu R, Chen Y (2017) Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem Mater 29:8637–8652

    Article  CAS  Google Scholar 

  239. Sasaguri K, Takahashi N (2018) CT and MR imaging for solid renal mass characterization. Eur J Radiol 99:40–54

    Article  PubMed  Google Scholar 

  240. Visvanathan R, Chapman I (2010) Preventing sarcopaenia in older people. Maturitas 66:383–388

    Article  CAS  PubMed  Google Scholar 

  241. Small WC, DeSimone-Macchi D, Parker JR, Sukerkar A, Hahn PF, Rubin DL et al (1999) A multisite phase III study of the safety and efficacy of a new manganese chloride-based gastrointestinal contrast agent for MRI of the abdomen and pelvis. J Magn Reson Imaging 10:15–24

    Article  CAS  PubMed  Google Scholar 

  242. Wang Z, Xuan J, Zhao Z, Li Q, Geng F (2017) Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano 11:11559–11565

    Article  CAS  PubMed  Google Scholar 

  243. Dai C, Chen Y, Jing X, Xiang L, Yang D, Lin H et al (2017) Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano 11:12696–12712

    Article  CAS  PubMed  Google Scholar 

  244. Geisinger E, Isberg RR (2017) Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis 215:S9-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1211–1259

    Article  Google Scholar 

  246. Pandit S, Karunakaran S, Boda SK, Basu B, De M (2016) High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl Mater Interfaces 8:31567–31573

    Article  CAS  PubMed  Google Scholar 

  247. Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z et al (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10:11000–11011

    Article  CAS  PubMed  Google Scholar 

  248. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  PubMed  Google Scholar 

  249. Kim IY, Park S, Kim H, Park S, Ruoff RS, Hwang S (2014) Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: an effective way to tailor the physicochemical and antibacterial properties of graphene film. Adv Funct Mater 24:2288–2294

    Article  CAS  Google Scholar 

  250. Salas EC, Sun Z, Lüttge A, Tour JM (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852–4856

    Article  CAS  PubMed  Google Scholar 

  251. Hu W, Peng C, Luo W, Lv M, Li X, Li D et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  252. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA et al (2020) Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater 32:2001093

    Article  CAS  Google Scholar 

  253. Zheng H, Wang S, Cheng F, He X, Liu Z, Wang W et al (2021) Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@ CeO2 nanocomposites for infection-impaired skin multimodal therapy. Chem Eng J 424:130148

    Article  CAS  Google Scholar 

  254. Alimohammadi F, Sharifian GhM, Attanayake NH, Thenuwara AC, Gogotsi Y, Anasori B et al (2018) Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir 34:7192–7200

    Article  CAS  PubMed  Google Scholar 

  255. Zheng K, Li S, Jing L, Chen P, Xie J (2020) Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv Healthc Mater 9:2001007

    Article  CAS  Google Scholar 

  256. Pandey RP, Rasheed PA, Gomez T, Rasool K, Ponraj J, Prenger K et al (2020) Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets. ACS Appl Nano Mater 3:11372–11382

    Article  CAS  Google Scholar 

  257. Lim GP, Soon CF, Morsin M, Ahmad MK, Nayan N, Tee KS (2020) Synthesis, characterization and antifungal property of Ti3C2Tx MXene nanosheets. Ceram Int 46:20306–20312

    Article  CAS  Google Scholar 

  258. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 21:1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Yoon J, Shin M, Lim J, Lee J-Y, Choi J-W (2020) Recent advances in MXene nanocomposite-based biosensors. Biosensors 10:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Khan R, Andreescu S (2020) MXenes-based bioanalytical sensors: design, characterization, and applications. Sensors 20:5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Chia HL, Mayorga-Martinez CC, Antonatos N, Sofer Z, Gonzalez-Julian JJ, Webster RD et al (2020) MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance. Anal Chem 92:2452–2459

    Article  CAS  PubMed  Google Scholar 

  262. Zhang H, Wang Z, Zhang Q, Wang F, Liu Y (2019) Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron 124:184–190

    Article  PubMed  Google Scholar 

  263. Lei Y, Zhao W, Zhang Y, Jiang Q, He J, Baeumner AJ et al (2019) A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15:1901190

    Article  Google Scholar 

  264. Liu J, Jiang X, Zhang R, Zhang Y, Wu L, Lu W et al (2019) MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv Funct Mater 29:1807326

    Article  Google Scholar 

  265. Zheng J, Diao J, Jin Y, Ding A, Wang B, Wu L et al (2018) An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide. J Electrochem Soc 165:B227

    Article  CAS  Google Scholar 

  266. Zheng J, Wang B, Ding A, Weng B, Chen J (2018) Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J Electroanal Chem 816:189–194

    Article  CAS  Google Scholar 

  267. Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 121:243–249

    Article  CAS  PubMed  Google Scholar 

  268. Shankar SS, Shereema RM, Rakhi RB (2018) Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes. ACS Appl Mater Interfaces 10:43343–43351

    Article  CAS  PubMed  Google Scholar 

  269. Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P et al (2018) Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensors Actuators B Chem 263:360–368

    Article  CAS  Google Scholar 

  270. Jiang Y, Zhang X, Pei L, Yue S, Ma L, Zhou L et al (2018) Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor. Chem Eng J 339:547–556

    Article  CAS  Google Scholar 

  271. Rakhi RB, Nayak P, Xia C, Alshareef HN (2016) Erratum: novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 6:25

    Google Scholar 

  272. Song D, Jiang X, Li Y, Lu X, Luan S, Wang Y et al (2019) Metal−organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J Hazard Mater 373:367–376

    Article  CAS  PubMed  Google Scholar 

  273. Wu D, Wu M, Yang J, Zhang H, Xie K, Lin C-T et al (2019) Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing. Mater Lett 236:412–415

    Article  CAS  Google Scholar 

  274. Rasheed PA, Pandey RP, Rasool K, Mahmoud KA (2018) Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sensors Actuators B Chem 265:652–659

    Article  Google Scholar 

  275. Wu L, Lu X, Wu Z-S, Dong Y, Wang X, Zheng S et al (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75

    Article  CAS  PubMed  Google Scholar 

  276. Zhu X, Liu B, Hou H, Huang Z, Zeinu KM, Huang L et al (2017) Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd (II), Pb (II), Cu (II) and Hg (II). Electrochim Acta 248:46–57

    Article  CAS  Google Scholar 

  277. Zhou L, Zhang X, Ma L, Gao J, Jiang Y (2017) Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochem Eng J 128:243–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director CSIR-AMPRI Bhopal for providing the necessary institutional facilities and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that the submitted manuscript is original. They acknowledge the current review has been conducted ethically, and all authors have agreed upon the final shape of the research.

Consent to participate

The authors consent to participate in this review study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, K., Hada, V., Paul, S. et al. The Rise of MXene: A Wonder 2D Material, from Its Synthesis and Properties to Its Versatile Applications—A Comprehensive Review. Top Curr Chem (Z) 381, 11 (2023). https://doi.org/10.1007/s41061-023-00420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-023-00420-1

Keywords

Navigation