Skip to main content
Log in

Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics

近红外或超声敏感的二维纳米材料用于癌症诊疗的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

In recent years, the emerging two-dimensional (2D) nanomaterials have shown great potential for a variety of applications such as electronics, catalysis, supercapacitors, and energy materials. In the biomedical arena, these nanomaterials, especially 2D-ultrathin nanomaterials, have also been regarded as promising nano-carriers and/or diagnostic agents for cancer diagnosis and treatment, owing to their remarkable mechanical, photothermal, and optical properties. In this review, we provide the recent development of the nanoplatforms based on near-infrared/ultrasound-sensitive 2D-materials, representatively such as graphdiyne (GDY), black phosphorus, transition metal dichalcogenides (TMDs), and antimonene, for non-invasive cancer therapeutics including photothermal, photodynamic and sonodynamic approaches. The general properties of these 2D nanomaterials linking to biomedical interests are first introduced, followed by the fabrication processes of diverse nano-platforms and related outcomes of cancer diagnosis and treatments. We also outline the current challenges and prospects of the 2D materials for non-invasive approaches to cancer treatments in the future.

摘要

二维纳米材料在电子学、 催化、 超级电容器和能源材料等领域展现出了巨大的应用潜力. 在生物医学领域, 以二维超薄纳米材料为代表的低维材料, 因其优异的机械、 光热、 电子和光学性能, 以及良好的生物相容性和生物降解性, 被广泛用于构建多功能纳米平台并应用于肿瘤的诊疗. 本综述概述了石墨炔、 黑磷、 过渡金属二卤化物、 锑烯等新型低维材料的特定结构与性质, 详细总结了基于各类对近红外或超声敏感的材料构建的纳米平台在光热、 光动力和声动力无创肿瘤治疗中的最新进展, 并进一步探讨了纳米材料在无创式癌症治疗中所面临的挑战与应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer, 2018, 103: 356–387

    Article  CAS  Google Scholar 

  2. Hiller JG, Perry NJ, Poulogiannis G, et al. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol, 2018, 15: 205–218

    Google Scholar 

  3. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol, 2017, 14: 611–629

    Google Scholar 

  4. Wu Y, Xu G, Jin X, et al. Supramolecular dendritic polymers for diagnostic and theranostic applications. Sci China Mater, 2018, 61: 1444–1453

    CAS  Google Scholar 

  5. Mohammad-Hadi L, MacRobert AJ, Loizidou M, et al. Photodynamic therapy in 3D cancer models and the utilisation of nanodelivery systems. Nanoscale, 2018, 10: 1570–1581

    CAS  Google Scholar 

  6. Canavese G, Ancona A, Racca L, et al. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem Eng J, 2018, 340: 155–172

    CAS  Google Scholar 

  7. Li X, Lee S, Yoon J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev, 2018, 47: 1174–1188

    CAS  Google Scholar 

  8. Luby BM, Walsh CD, Zheng G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angew Chem Int Ed, 2019, 58: 2558–2569

    CAS  Google Scholar 

  9. Wang L, Hu Y, Hao Y, et al. Tumor-targeting core-shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy. J Control Release, 2018, 286: 74–84

    CAS  Google Scholar 

  10. Sun T, Zhang G, Wang Q, et al. A targeting theranostics nanomedicine as an alternative approach for hyperthermia perfusion. Biomaterials, 2018, 183: 268–279

    CAS  Google Scholar 

  11. Guo X, Wei X, Chen Z, et al. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog Mater Sci, 2020, 107: 100599

    CAS  Google Scholar 

  12. Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer, 2017, 17: 20–37

    CAS  Google Scholar 

  13. Fan T, Zhou Y, Qiu M, et al. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. J Innov Opt Health Sci, 2018, 11: 1830003

    CAS  Google Scholar 

  14. Ji X, Kong N, Wang J, et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv Mater, 2018, 30: 1803031

    Google Scholar 

  15. Iannazzo D, Ziccarelli I, Pistone A. Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy. J Mater Chem B, 2017, 5: 6471–6489

    CAS  Google Scholar 

  16. Liu J, Jiang X, Zhang R, et al. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv Funct Mater, 2018, 29: 1807326

    Google Scholar 

  17. Bao Q, Zhang H, Ni Z, et al. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res, 2010, 4: 297–307

    Google Scholar 

  18. Bao Q, Zhang H, Wang B, et al. Broadband graphene polarizer. Nat Photon, 2011, 5: 411–415

    CAS  Google Scholar 

  19. Huang H, Ren X, Li Z, et al. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology, 2018, 29: 235201

    Google Scholar 

  20. Zhang H, Tang D, Knize RJ, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl Phys Lett, 2010, 96: 111112

    Google Scholar 

  21. Fan T, Xie Z, Huang W, et al. Two-dimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology, 2019, 30: 114002

    CAS  Google Scholar 

  22. Ge Y, Zhu Z, Xu Y, et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv Opt Mater, 2018, 6: 1701166

    Google Scholar 

  23. Jiang X, Gross S, Withford MJ, et al. Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers. Opt Mater Express, 2018, 8: 3055–3071

    CAS  Google Scholar 

  24. Jiang X, Liu S, Liang W, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T=F, O, or OH). Laser Photon Rev, 2018, 12: 1700229

    Google Scholar 

  25. Dhanabalan SC, Ponraj JS, Zhang H, et al. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale, 2016, 8: 6410–6434

    CAS  Google Scholar 

  26. Qi X, Zhang Y, Ou Q, et al. Photonics and optoelectronics of 2D metal-halide perovskites. Small, 2018, 14: 1800682

    Google Scholar 

  27. Wang Z, Xu Y, Dhanabalan SC, et al. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J, 2016, 8: 1–10

    Google Scholar 

  28. Huang W, Xie Z, Fan T, et al. Black-phosphorus-analogue tin monosulfide: An emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. J Mater Chem C, 2018, 6: 9582–9593

    CAS  Google Scholar 

  29. Lu S, Ge Y, Sun Z, et al. Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus. Photon Res, 2016, 4: 286–292

    CAS  Google Scholar 

  30. Luo S, Zhao J, Zou J, et al. Self-standing polypyrrole/black phosphorus laminated film: Promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl Mater Interfaces, 2018, 10: 3538–3548

    CAS  Google Scholar 

  31. Chen L, Chen C, Chen W, et al. Biodegradable black phosphorus nanosheets mediate specific delivery of hTERT siRNA for synergistic cancer therapy. ACS Appl Mater Interfaces, 2018, 10: 21137–21148

    CAS  Google Scholar 

  32. Yu B, Goel S, Ni D, et al. Reassembly of 89Zr-labeled cancer cell membranes into multicompartment membrane-derived liposomes for PET-trackable tumor-targeted theranostics. Adv Mater, 2018, 30: 1704934

    Google Scholar 

  33. Li Z, Chen Y, Yang Y, et al. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front Bioeng Biotechnol, 2019, 7: 293

    Google Scholar 

  34. Madamsetty VS, Mukherjee A, Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol, 2019, 10: 1264

    CAS  Google Scholar 

  35. Stubelius A, Lee S, Almutairi A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc Chem Res, 2019, 52: 3108–3119

    CAS  Google Scholar 

  36. Liu L, Yao H, Li H, et al. Recent advances of low-dimensional materials in lasing applications. FlatChem, 2018, 10: 22–38

    Google Scholar 

  37. Tang Q, Zhou Z. Graphene-analogous low-dimensional materials. Prog Mater Sci, 2013, 58: 1244–1315

    CAS  Google Scholar 

  38. Zhang H, Wang J, Hasan T, et al. Photonics of 2D materials. Opt Commun, 2018, 406: 1–2

    CAS  Google Scholar 

  39. Liu Y, Li J, Chen H, et al. Magnet-activatable nanoliposomes as intracellular bubble microreactors to enhance drug delivery efficacy and burst cancer cells. Nanoscale, 2019, 11: 18854–18865

    CAS  Google Scholar 

  40. Liu X, Guo Q, Qiu J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv Mater, 2017, 29: 1605886

    Google Scholar 

  41. Men L, White MA, Andaraarachchi H, et al. Synthetic development of low dimensional materials. Chem Mater, 2016, 29: 168–175

    Google Scholar 

  42. Lennon T, Bakewell D, Willis E. Workplace lactation support in milwaukee county 5 years after the affordable care act. J Hum Lact, 2017, 33: 214–219

    Google Scholar 

  43. Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv Mater, 2015, 27: 7261–7284

    CAS  Google Scholar 

  44. Broza YY, Vishinkin R, Barash O, et al. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev, 2018, 47: 4781–4859

    CAS  Google Scholar 

  45. Pasinszki T, Krebsz M, Tung TT, et al. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors, 2017, 17: 1919

    Google Scholar 

  46. Tripathi KM, Kim TY, Losic D, et al. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon, 2016, 110: 97–129

    CAS  Google Scholar 

  47. Shi L, Zhao T. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J Mater Chem A, 2017, 5: 3735–3758

    CAS  Google Scholar 

  48. Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials. Chem Rev, 2018, 118: 7744–7803

    CAS  Google Scholar 

  49. Singh D, Gupta SK, Sonvane Y, et al. Antimonene: A monolayer material for ultraviolet optical nanodevices. J Mater Chem C, 2016, 4: 6386–6390

    CAS  Google Scholar 

  50. Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 2009, 19: 3077–3083

    CAS  Google Scholar 

  51. Huang Z, Han W, Tang H, et al. Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater, 2015, 2: 035011

    Google Scholar 

  52. Jiang Y, Miao L, Jiang G, et al. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci Rep, 2015, 5: 16372

    CAS  Google Scholar 

  53. Wang H, Miao L, Jiang Y, et al. Enhancing the saturable absorption and carrier dynamics of graphene with plasmonic nanowires. Phys Status Solidi B, 2015, 252: 2159–2166

    CAS  Google Scholar 

  54. Zhang H, Tang D, Zhao L, et al. Vector dissipative solitons in graphene mode locked fiber lasers. Opt Commun, 2010, 283: 3334–3338

    CAS  Google Scholar 

  55. Kravets VG, Grigorenko AN, Nair RR, et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys Rev B, 2010, 81: 155413

    Google Scholar 

  56. Miao L, Jiang Y, Lu S, et al. Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime. Photon Res, 2015, 3: 214–219

    CAS  Google Scholar 

  57. Yin F, Gu B, Lin Y, et al. Functionalized 2D nanomaterials for gene delivery applications. Coord Chem Rev, 2017, 347: 77–97

    CAS  Google Scholar 

  58. Liu Y, Duan X, Huang Y, et al. Two-dimensional transistors beyond graphene and TMDCs. Chem Soc Rev, 2018, 47: 6388–6409

    CAS  Google Scholar 

  59. Liu X, Ma D, Tang H, et al. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS Appl Mater Interfaces, 2014, 6: 8173–8183

    CAS  Google Scholar 

  60. Russier J, León V, Orecchioni M, et al. Few-layer graphene kills selectively tumor cells from myelomonocytic leukemia patients. Angew Chem Int Ed, 2017, 56: 3014–3019

    CAS  Google Scholar 

  61. Lu J, Cheng C, He YS, et al. Multilayered graphene hydrogel membranes for guided bone regeneration. Adv Mater, 2016, 28: 4025–4031

    CAS  Google Scholar 

  62. Zeng S, Sreekanth KV, Shang J, et al. Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv Mater, 2015, 27: 6163–6169

    CAS  Google Scholar 

  63. McCallion C, Burthem J, Rees-Unwin K, et al. Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur J Pharm BioPharm, 2016, 104: 235–250

    CAS  Google Scholar 

  64. Yang K, Zhang S, Zhang G, et al. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett, 2010, 10: 3318–3323

    CAS  Google Scholar 

  65. Yin T, Liu J, Zhao Z, et al. Redox sensitive hyaluronic acid-decorated graphene oxide for photothermally controlled tumorcytoplasm-selective rapid drug delivery. Adv Funct Mater, 2017, 27: 1604620

    Google Scholar 

  66. Ruan J, Wang X, Yu Z, et al. Enhanced physiochemical and mechanical performance of chitosan-grafted graphene oxide for superior osteoinductivity. Adv Funct Mater, 2016, 26: 1085–1097

    CAS  Google Scholar 

  67. Cheeveewattanagul N, Morales-Narváez E, Hassan ARHA, et al. Straightforward immunosensing platform based on graphene oxide-decorated nanopaper: A highly sensitive and fast biosensing approach. Adv Funct Mater, 2017, 27: 1702741

    Google Scholar 

  68. Reina G, González-Domínguez JM, Criado A, et al. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev, 2017, 46: 4400–4416

    CAS  Google Scholar 

  69. Yan M, Liu Y, Zhu X, et al. Nanoscale reduced graphene oxidemediated photothermal therapy together with IDO inhibition and PD-L1 blockade synergistically promote antitumor immunity. ACS Appl Mater Interfaces, 2019, 11: 1876–1885

    CAS  Google Scholar 

  70. He L, Sarkar S, Barras A, et al. Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chem Commun, 2017, 53: 4022–4025

    CAS  Google Scholar 

  71. Huo D, Liu G, Li Y, et al. Construction of antithrombotic tissue-engineered blood vessel via reduced graphene oxide based dualenzyme biomimetic cascade. ACS Nano, 2017, 11: 10964–10973

    CAS  Google Scholar 

  72. Povedano E, Cincotto FH, Parrado C, et al. Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron, 2017, 89: 343–351

    CAS  Google Scholar 

  73. Bitounis D, Ali-Boucetta H, Hong BH, et al. Prospects and challenges of graphene in biomedical applications. Adv Mater, 2013, 25: 2258–2268

    CAS  Google Scholar 

  74. Cheng C, Li S, Thomas A, et al. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem Rev, 2017, 117: 1826–1914

    CAS  Google Scholar 

  75. Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films. Chem Commun, 2010, 46: 3256–3258

    CAS  Google Scholar 

  76. Tang H, Hessel CM, Wang J, et al. Two-dimensional carbon leading to new photoconversion processes. Chem Soc Rev, 2014, 43: 4281–4299

    CAS  Google Scholar 

  77. Chang F, Huang L, Li Y, et al. A short review of synthesis of graphdiyne and its potential applications. Int J Electrochem Sci, 2017, 12: 10348–10358

    CAS  Google Scholar 

  78. Zhou J, Xie Z, Liu R, et al. Synthesis of ultrathin graphdiyne film using a surface template. ACS Appl Mater Interfaces, 2019, 11: 2632–2637

    CAS  Google Scholar 

  79. Qian X, Ning Z, Li Y, et al. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans, 2012, 41: 730–733

    CAS  Google Scholar 

  80. Li G, Li Y, Qian X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J Phys Chem C, 2011, 115: 2611–2615

    CAS  Google Scholar 

  81. Prabakaran P, Satapathy S, Prasad E, et al. Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics. J Mater Chem C, 2018, 6: 380–387

    CAS  Google Scholar 

  82. Wang SS, Liu HB, Kan XN, et al. Superlyophilicity-facilitated synthesis reaction at the microscale: Ordered graphdiyne stripe arrays. Small, 2017, 13: 1602265

    Google Scholar 

  83. Sharma A, Wen B, Liu B, et al. Defect engineering in few-layer phosphorene. Small, 2018, 14: 1704556

    Google Scholar 

  84. Van den Heuvel W, Soncini A. Dirac cones in the spectrum of bond-decorated graphenes. J Chem Phys, 2014, 140: 234114

    Google Scholar 

  85. Deb J, Bhattacharya B, Singh NB, et al. First principle study of adsorption of boron-halogenated system on pristine graphyne. Struct Chem, 2016, 27: 1221–1227

    CAS  Google Scholar 

  86. Chen X, Fang D, Zhang Y, et al. Novel electronic transport of zigzag graphdiyne nanoribbons induced by edge states. Europhys Lett, 2014, 107: 57002

    Google Scholar 

  87. Mehran S, Rouhi S, Salmalian K. Molecular dynamics simulations of the adsorption of polymer chains on graphyne and its family. Physica B-Condensed Matter, 2015, 456: 41–49

    CAS  Google Scholar 

  88. Nagarajan V, Chandiramouli R. Investigation of NH3 adsorption behavior on graphdiyne nanosheet and nanotubes: A first-principles study. J Mol Liq, 2018, 249: 24–32

    CAS  Google Scholar 

  89. Qiu H, Sheng X. A first principle study of hydrogenated graphdiyne. Phys Lett A, 2018, 382: 662–666

    CAS  Google Scholar 

  90. Enyashin AN, Ivanovskii AL. Fluorographynes: Stability, structural and electronic properties. Superlattices MicroStruct, 2013, 55: 75–82

    Google Scholar 

  91. Yan Z, Wang L, Cheng J, et al. Lithium-decorated oxidized graphyne for hydrogen storage by first principles study. J Appl Phys, 2014, 116: 174304

    Google Scholar 

  92. Gao X, Zhou J, Du R, et al. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation. Adv Mater, 2016, 28: 168–173

    CAS  Google Scholar 

  93. Liu J, Chen C, Zhao Y. Progress and prospects of graphdiyne-based materials in biomedical applications. Adv Mater, 2019, 31: 1804386

    CAS  Google Scholar 

  94. Li S, Chen Y, Liu H, et al. Graphdiyne materials as nanotransducer for in vivo photoacoustic imaging and photothermal therapy of tumor. Chem Mater, 2017, 29: 6087–6094

    CAS  Google Scholar 

  95. Jin J, Guo M, Liu J, et al. Graphdiyne nanosheet-based drug delivery platform for photothermal/chemotherapy combination treatment of cancer. ACS Appl Mater Interfaces, 2018, 10: 8436–8442

    CAS  Google Scholar 

  96. Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89: 235319

    Google Scholar 

  97. Woomer AH, Farnsworth TW, Hu J, et al. Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano, 2015, 9: 8869–8884

    CAS  Google Scholar 

  98. Ou H, Li J, Chen C, et al. Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Sci China Mater, 2019, 62: 1740–1758

    CAS  Google Scholar 

  99. Kong L, Qin Z, Xie G, et al. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 µm to 2.7 µm wavelength. Laser Phys Lett, 2016, 13: 045801

    Google Scholar 

  100. Li C, Liu J, Guo Z, et al. Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser. Opt Commun, 2018, 406: 158–162

    CAS  Google Scholar 

  101. Buscema M, Groenendijk DJ, Blanter SI, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14: 3347–3352

    CAS  Google Scholar 

  102. Han C, Hu Z, Gomes LC, et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett, 2017, 17: 4122–4129

    CAS  Google Scholar 

  103. Wood JD, Wells SA, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett, 2014, 14: 6964–6970

    CAS  Google Scholar 

  104. Qin Z, Xie G, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 28 µm. Opt Express, 2015, 23: 24713–24718

    CAS  Google Scholar 

  105. Chu Z, Liu J, Guo Z, et al. 2 µm passively Q-switched laser based on black phosphorus. Opt Mater Express, 2016, 6: 2374–2379

    CAS  Google Scholar 

  106. Chen X, Xu G, Ren X, et al. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. J Mater Chem A, 2017, 5: 6581–6588

    CAS  Google Scholar 

  107. Ramireddy T, Xing T, Rahman MM, et al. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A, 2015, 3: 5572–5584

    CAS  Google Scholar 

  108. Xu GL, Chen Z, Zhong GM, et al. Nanostructured black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett, 2016, 16: 3955–3965

    CAS  Google Scholar 

  109. Liu H, Tao L, Zhang Y, et al. Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery. ACS Appl Mater Interfaces, 2017, 9: 36849–36856

    CAS  Google Scholar 

  110. Haghighat-Shishavan S, Nazarian-Samani M, Nazarian-Samani M, et al. Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium. J Mater Chem A, 2018, 6: 10121–10134

    CAS  Google Scholar 

  111. Qiu M, Singh A, Wang D, et al. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today, 2019, 25: 135–155

    CAS  Google Scholar 

  112. Latiff NM, Teo WZ, Sofer Z, et al. The cytotoxicity of layered black phosphorus. Chem Eur J, 2015, 21: 13991–13995

    CAS  Google Scholar 

  113. Zhang X, Zhang Z, Zhang S, et al. Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small, 2017, 13: 1701210

    Google Scholar 

  114. Wang H, Yang X, Shao W, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc, 2015, 137: 11376–11382

    CAS  Google Scholar 

  115. Majoral JP, François JM, Fabre R, et al. Multiplexing technology for in vitro diagnosis of pathogens: The key contribution of phosphorus dendrimers. Sci China Mater, 2018, 61: 1454–1461

    CAS  Google Scholar 

  116. Yin F, Hu K, Chen S, et al. Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J Mater Chem B, 2017, 5: 5433–5440

    CAS  Google Scholar 

  117. Sun Z, Zhao Y, Li Z, et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small, 2017, 13: 1602896

    Google Scholar 

  118. Fojtů M, Chia X, Sofer Z, et al. Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv Funct Mater, 2017, 27: 1701955

    Google Scholar 

  119. Zhao Y, Tong L, Li Z, et al. Stable and multifunctional dyemodified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chem Mater, 2017, 29: 7131–7139

    CAS  Google Scholar 

  120. Tao W, Ji X, Xu X, et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew Chem Int Ed, 2017, 56: 11896–11900

    CAS  Google Scholar 

  121. Zhang S, Xie M, Li F, et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew Chem Int Ed, 2016, 55: 1666–1669

    CAS  Google Scholar 

  122. Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv Mater, 2017, 29: 1605299

    Google Scholar 

  123. Wang L, Xu D, Gao J, et al. Semiconducting quantum dots: Modification and applications in biomedical science. Sci China Mater, 2020, 63: 1631–1650

    CAS  Google Scholar 

  124. Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 2016, 28: 6332–6336

    CAS  Google Scholar 

  125. Gibaja C, Rodriguez-San-Miguel D, Ares P, et al. Few-layer antimonene by liquid-phase exfoliation. Angew Chem Int Ed, 2016, 55: 14345–14349

    CAS  Google Scholar 

  126. Ares P, Palacios JJ, Abellán G, et al. Recent progress on antimonene: A new bidimensional material. Adv Mater, 2018, 30: 1703771

    Google Scholar 

  127. Wang X, He J, Zhou B, et al. Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew Chem Int Ed, 2018, 57: 8668–8673

    CAS  Google Scholar 

  128. Wang X, Song J, Qu J. Antimonene: From experimental preparation to practical application. Angew Chem Int Ed, 2019, 58: 1574–1584

    CAS  Google Scholar 

  129. Tao W, Ji X, Zhu X, et al. Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv Mater, 2018, 30: 1802061

    Google Scholar 

  130. Lu G, Lv C, Bao W, et al. Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chem Sci, 2019, 10: 4847–4853

    CAS  Google Scholar 

  131. Guan G, Zhang S, Liu S, et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J Am Chem Soc, 2015, 137: 6152–6155

    CAS  Google Scholar 

  132. Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47: 1067–1075

    CAS  Google Scholar 

  133. Joensen P, Frindt RF, Morrison SR. Single-layer MoS2. Mater Res Bull, 1986, 21: 457–461

    CAS  Google Scholar 

  134. Yuwen L, Yu H, Yang X, et al. Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chem Commun, 2016, 52: 529–532

    CAS  Google Scholar 

  135. Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102: 10451–10453

    CAS  Google Scholar 

  136. Benavente E. Intercalation chemistry of molybdenum disulfide. Coord Chem Rev, 2002, 224: 87–109

    CAS  Google Scholar 

  137. Daeneke T, Clark RM, Carey BJ, et al. Reductive exfoliation of substoichiometric MoS2 bilayers using hydrazine salts. Nanoscale, 2016, 8: 15252–15261

    CAS  Google Scholar 

  138. O’Neill A, Khan U, Coleman JN. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem Mater, 2012, 24: 2414–2421

    Google Scholar 

  139. Li X, Shan J, Zhang W, et al. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small, 2017, 13: 1602660

    Google Scholar 

  140. Rao CNR, Ramakrishna Matte HSS, Maitra U. Graphene analogues of inorganic layered materials. Angew Chem Int Ed, 2013, 52: 13162–13185

    CAS  Google Scholar 

  141. Zhang X, Lai Z, Tan C, et al. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew Chem Int Ed, 2016, 55: 8816–8838

    CAS  Google Scholar 

  142. Lu X, Utama MIB, Lin J, et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett, 2014, 14: 2419–2425

    CAS  Google Scholar 

  143. Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033

    CAS  Google Scholar 

  144. Jariwala D, Sangwan VK, Lauhon LJ, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8: 1102–1120

    CAS  Google Scholar 

  145. Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216–226

    CAS  Google Scholar 

  146. Chen H, Liu T, Su Z, et al. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz, 2018, 3: 74–89

    CAS  Google Scholar 

  147. Lei Z, Zhu W, Xu S, et al. Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices. ACS Appl Mater Interfaces, 2016, 8: 20900–20908

    CAS  Google Scholar 

  148. Zhang C, Hu DF, Xu JW, et al. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano, 2018, 12: 12347–12356

    CAS  Google Scholar 

  149. Urbanová V, Pumera M. Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides. Nanoscale, 2019, 11: 15770–15782

    Google Scholar 

  150. Zhang A, Li A, Zhao W, et al. Recent advances in functional polymer decorated two-dimensional transition-metal dichalcogenides nanomaterials for chemo-photothermal therapy. Chem Eur J, 2018, 24: 4215–4227

    CAS  Google Scholar 

  151. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23: 4248–4253

    CAS  Google Scholar 

  152. Szuplewska A, Kulpińska D, Dybko A, et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater Sci Eng-C, 2019, 98: 874–886

    CAS  Google Scholar 

  153. Lin H, Gao S, Dai C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc, 2017, 139: 16235–16247

    CAS  Google Scholar 

  154. Han X, Huang J, Lin H, et al. 2D ultrathin MXene-based drugdelivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv Healthc Mater, 2018, 7: 1701394

    Google Scholar 

  155. Li Z, Zhang H, Han J, et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv Mater, 2018, 30: 1706981

    Google Scholar 

  156. Liu Z, Zhao M, Lin H, et al. 2D magnetic titanium carbide MXene for cancer theranostics. J Mater Chem B, 2018, 6: 3541–3548

    CAS  Google Scholar 

  157. Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv Sci, 2018, 5: 1800518

    Google Scholar 

  158. Zhang C, Li Y, Zhang P, et al. Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability. Sol Energy Mater Sol Cells, 2019, 189: 11–20

    CAS  Google Scholar 

  159. Tay RY, Park HJ, Ryu GH, et al. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale, 2016, 8: 2434–2444

    CAS  Google Scholar 

  160. Zhi C, Hanagata N, Bando Y, et al. Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity. Chem Asian J, 2011, 6: 2530–2535

    CAS  Google Scholar 

  161. Sainsbury T, Satti A, May P, et al. Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc, 2012, 134: 18758–18771

    CAS  Google Scholar 

  162. Wang W, Bando Y, Zhi C, et al. Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes. J Am Chem Soc, 2008, 130: 8144–8145

    CAS  Google Scholar 

  163. Maguer A, Leroy E, Bresson L, et al. A versatile strategy for the functionalization of boron nitride nanotubes. J Mater Chem, 2009, 19: 1271–1275

    CAS  Google Scholar 

  164. Chen X, Wu P, Rousseas M, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc, 2009, 131: 890–891

    CAS  Google Scholar 

  165. Lahiri D, Rouzaud F, Richard T, et al. Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater, 2010, 6: 3524–3533

    CAS  Google Scholar 

  166. Li L, Li LH, Ramakrishnan S, et al. Controlling wettability of boron nitride nanotube films and improved cell proliferation. J Phys Chem C, 2012, 116: 18334–18339

    CAS  Google Scholar 

  167. Ciofani G, Danti S, Genchi GG, et al. Boron nitride nanotubes: Biocompatibility and potential spill-over in nanomedicine. Small, 2013, 9: 1672–1685

    CAS  Google Scholar 

  168. Shanmugam V, Selvakumar S, Yeh CS. Near-infrared lightresponsive nanomaterials in cancer therapeutics. Chem Soc Rev, 2014, 43: 6254–6287

    CAS  Google Scholar 

  169. Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev, 2019, 48: 2053–2108

    CAS  Google Scholar 

  170. Farokhi M, Mottaghitalab F, Saeb MR, et al. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release, 2019, 309: 203–219

    CAS  Google Scholar 

  171. Day E, Fay B, Melamed J. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. Int J Nanomed, 2015, 10: 6931–6941

    Google Scholar 

  172. Kong L, Xing L, Zhou B, et al. Dendrimer-modified MoS2 nanoflakes as a platform for combinational gene silencing and photothermal therapy of tumors. ACS Appl Mater Interfaces, 2017, 9: 15995–16005

    CAS  Google Scholar 

  173. Wang BK, Yu XF, Wang JH, et al. Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials, 2015, 78: 27–39

    Google Scholar 

  174. Wei P, Chen J, Hu Y, et al. Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy, and gene silencing of tumors. Adv Healthc Mater, 2017, 5: 3203–3213

    Google Scholar 

  175. Hou X, Tao Y, Pang Y, et al. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int J Cancer, 2018, 143: 3050–3060

    CAS  Google Scholar 

  176. Li L, Yang S, Song L, et al. An endogenous vaccine based on fluorophores and multivalent immunoadjuvants regulates tumor micro-environment for synergistic photothermal and immunotherapy. Theranostics, 2018, 8: 860–873

    CAS  Google Scholar 

  177. Zhou B, Song J, Wang M, et al. BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy. Nanoscale, 2018, 10: 21640–21647

    CAS  Google Scholar 

  178. Jung HS, Verwilst P, Sharma A, et al. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem Soc Rev, 2018, 47: 2280–2297

    CAS  Google Scholar 

  179. Bao Z, Liu X, Liu Y, et al. Near-infrared light-responsive in-organic nanomaterials for photothermal therapy. Asian J Pharm Sci, 2016, 11: 349–364

    Google Scholar 

  180. Murugan C, Sharma V, Murugan RK, et al. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J Control Release, 2019, 299: 1–20

    CAS  Google Scholar 

  181. Li Z, Huang H, Tang S, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74: 144–154

    CAS  Google Scholar 

  182. Bao X, Ou Q, Xu ZQ, et al. Band structure engineering in 2D materials for optoelectronic applications. Adv Mater Technol, 2018, 3: 1800072

    Google Scholar 

  183. de Melo-Diogo D, Lima-Sousa R, Alves CG, et al. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci, 2019, 7: 3534–3551

    CAS  Google Scholar 

  184. Yao J, Wang H, Chen M, et al. Recent advances in graphenebased nanomaterials: Properties, toxicity and applications in chemistry, biology and medicine. Microchim Acta, 2019, 186: 395

    Google Scholar 

  185. Chen YW, Su YL, Hu SH, et al. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliver Rev, 2016, 105: 190–204

    CAS  Google Scholar 

  186. Schaaf L, Schwab M, Ulmer C, et al. Hyperthermia synergizes with chemotherapy by inhibiting PARP1-dependent DNA replication arrest. Cancer Res, 2016, 76: 2868–2875

    CAS  Google Scholar 

  187. Mahmood M, Karmakar A, Fejleh A, et al. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug. Nanomedicine, 2009, 4: 883–893

    CAS  Google Scholar 

  188. Li X, Zhang Y, Ma Z, et al. The fabrication of rGO/(PLL/PASP)3@DOX nanorods with pH-switch for photothermal therapy and chemotherapy. Chem Eur J, 2018, 24: 13830–13838

    CAS  Google Scholar 

  189. Su T, Cheng F, Yan J, et al. Hierarchical nanocomposites of graphene oxide and PEGylated protoporphyrin as carriers to load doxorubicin hydrochloride for trimodal synergistic therapy. J Mater Chem B, 2018, 6: 4687–4696

    CAS  Google Scholar 

  190. Chong Y, Ma Y, Shen H, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials, 2014, 35: 5041–5048

    CAS  Google Scholar 

  191. Yao X, Niu X, Ma K, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 2017, 13: 1602225

    Google Scholar 

  192. Yang C, Chan KK, Xu G, et al. Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer. ACS Appl Mater Interfaces, 2019, 11: 2768–2781

    CAS  Google Scholar 

  193. Qian R, Maiti D, Zhong J, et al. Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon, 2019, 149: 55–62

    CAS  Google Scholar 

  194. Chang X, Zhang Y, Xu P, et al. Graphene oxide/MnWO4 nanocomposite for magnetic resonance/photoacoustic dual-model imaging and tumor photothermo-chemotherapy. Carbon, 2018, 138: 397–409

    CAS  Google Scholar 

  195. Xuan Y, Zhang RY, Zhao DH, et al. Ultrafast synthesis of gold nanosphere cluster coated by graphene quantum dot for active targeting PA/CT imaging and near-infrared laser/pH-triggered chemo-photothermal synergistic tumor therapy. Chem Eng J, 2019, 369: 87–99

    CAS  Google Scholar 

  196. Srimathi U, Nagarajan V, Chandiramouli R. Investigation on graphdiyne nanosheet in adsorption of sorafenib and regorafenib drugs: A DFT approach. J Mol Liq, 2019, 277: 776–785

    CAS  Google Scholar 

  197. Jiang W, Zhang Z, Wang Q, et al. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett, 2019, 19: 4060–4067

    CAS  Google Scholar 

  198. Robinson JT, Tabakman SM, Liang Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc, 2011, 133: 6825–6831

    CAS  Google Scholar 

  199. Sun Z, Xie H, Tang S, et al. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew Chem Int Ed, 2015, 54: 11526–11530

    CAS  Google Scholar 

  200. Hessel CM, P.Pattani V, Rasch M, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett, 2011, 11: 2560–2566

    CAS  Google Scholar 

  201. Tian Q, Jiang F, Zou R, et al. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano, 2011, 5: 9761–9771

    CAS  Google Scholar 

  202. Tyagi N, Attia NF, Geckeler KE. Exfoliated graphene nanosheets: pH-sensitive drug carrier and anti-cancer activity. J Colloid Interface Sci, 2017, 498: 364–377

    CAS  Google Scholar 

  203. Xie J, Wang N, Dong X, et al. Graphdiyne nanoparticles with high free radical scavenging activity for radiation protection. ACS Appl Mater Interfaces, 2019, 11: 2579–2590

    CAS  Google Scholar 

  204. Li J, Luo H, Zhai B, et al. Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci Rep, 2016, 6: 30361

    CAS  Google Scholar 

  205. Wang HD, Sang DK, Guo ZN, et al. Black phosphorus-based field effect transistor devices for Ag ions detection. Chin Phys B, 2018, 27: 087308

    Google Scholar 

  206. Mu H, Lin S, Wang Z, et al. Black phosphorus-polymer composites for pulsed lasers. Adv Opt Mater, 2015, 3: 1447–1453

    CAS  Google Scholar 

  207. Jiang Q, Xu L, Chen N, et al. Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angew Chem Int Ed, 2016, 55: 13849–13853

    CAS  Google Scholar 

  208. Qiu M, Sun ZT, Sang DK, et al. Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale, 2017, 9: 13384–13403

    CAS  Google Scholar 

  209. Ren X, Li Z, Huang Z, et al. Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector. Adv Funct Mater, 2017, 27: 1606834

    Google Scholar 

  210. Wu L, Xie Z, Lu L, et al. Few-layer tin sulfide: A promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv Opt Mater, 2018, 6: 1700985

    Google Scholar 

  211. Guo Z, Zhang H, Lu S, et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv Funct Mater, 2015, 25: 6996–7002

    CAS  Google Scholar 

  212. Lu SB, Miao LL, Guo ZN, et al. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt Express, 2015, 23: 11183–11194

    CAS  Google Scholar 

  213. Zhou J, Li Z, Ying M, et al. Black phosphorus nanosheets for rapid microrna detection. Nanoscale, 2018, 10: 5060–5064

    CAS  Google Scholar 

  214. Qian X, Gu Z, Chen Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater Horiz, 2017, 4: 800–816

    CAS  Google Scholar 

  215. Shao J, Xie H, Huang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun, 2016, 7: 12967

    CAS  Google Scholar 

  216. Yang G, Wan X, Gu Z, et al. Near infrared photothermal-responsive poly(vinyl alcohol)/black phosphorus composite hydrogels with excellent on-demand drug release capacity. J Mater Chem B, 2018, 6: 1622–1632

    CAS  Google Scholar 

  217. Tao W, Zhu X, Yu X, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater, 2017, 29: 1603276

    Google Scholar 

  218. Wu F, Zhang M, Chu X, et al. Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chem Eng J, 2019, 370: 387–399

    CAS  Google Scholar 

  219. Deng L, Xu Y, Sun C, et al. Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Sci Bull, 2018, 63: 917–924

    CAS  Google Scholar 

  220. Yang X, Wang D, Shi Y, et al. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl Mater Interfaces, 2018, 10: 12431–12440

    CAS  Google Scholar 

  221. Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318: 426–430

    CAS  Google Scholar 

  222. Lyu Q, Hsueh N, Chai CLL. The chemistry of bioinspired catechol (amine)-based coatings. ACS Biomater Sci Eng, 2019, 5: 2708–2724

    CAS  Google Scholar 

  223. Li Z, Xu H, Shao J, et al. Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl Mater Today, 2019, 15: 297–304

    Google Scholar 

  224. Lyu Q, Hsueh N, Chai CLL. Unravelling the polydopamine mystery: Is the end in sight? Polym Chem, 2019, 10: 5771–5777

    CAS  Google Scholar 

  225. Lyu Q, Hsueh N, Chai CLL. Direct evidence for the critical role of 5,6-dihydroxyindole in polydopamine deposition and aggregation. Langmuir, 2019, 35: 5191–5201

    CAS  Google Scholar 

  226. Zeng X, Luo M, Liu G, et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci, 2018, 5: 1800510

    Google Scholar 

  227. Zhang M, Wang W, Wu F, et al. Black phosphorus quantum dots gated, carbon-coated Fe3O4 nanocapsules (BPQDs@ss-Fe3O4@C) with low premature release could enable imaging-guided cancer combination therapy. Chem Eur J, 2018, 24: 12890–12901

    CAS  Google Scholar 

  228. Li Y, Liu Z, Hou Y, et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl Mater Interfaces, 2017, 9: 25098–25106

    CAS  Google Scholar 

  229. Liang X, Ye X, Wang C, et al. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Control Release, 2019, 296: 150–161

    CAS  Google Scholar 

  230. Xu Y, Wang Z, Guo Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater, 2016, 4: 1223–1229

    CAS  Google Scholar 

  231. Wang S, Shao J, Li Z, et al. Black phosphorus-based multimodal nanoagent: Showing targeted combinatory therapeutics against cancer metastasis. Nano Lett, 2019, 19: 5587–5594

    CAS  Google Scholar 

  232. Luo M, Cheng W, Zeng X, et al. Folic acid-functionalized black phosphorus quantum dots for targeted chemo-photothermal combination cancer therapy. Pharmaceutics, 2019, 11: 242

    CAS  Google Scholar 

  233. Zheng T, Zhou T, Feng X, et al. Enhanced plasmon-induced resonance energy transfer (PIRET)-mediated photothermal and photodynamic therapy guided by photoacoustic and magnetic resonance imaging. ACS Appl Mater Interfaces, 2019, 11: 31615–31626

    CAS  Google Scholar 

  234. Xue T, Liang W, Li Y, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun, 2019, 10: 28

    CAS  Google Scholar 

  235. Niu X, Li Y, Zhang Y, et al. Greatly enhanced photoabsorption and photothermal conversion of antimonene quantum dots through spontaneously partial oxidation. ACS Appl Mater Interfaces, 2019, 11: 17987–17993

    CAS  Google Scholar 

  236. Yu J, Wang XH, Feng J, et al. Antimonene nanoflakes: Extraordinary photoacoustic performance for high-contrast imaging of small volume tumors. Adv Healthc Mater, 2019, 8: 1900378

    Google Scholar 

  237. Eftekhari A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. J Mater Chem A, 2017, 5: 18299–18325

    CAS  Google Scholar 

  238. Yadav V, Roy S, Singh P, et al. 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small, 2019, 15: 1803706

    Google Scholar 

  239. Wang H, Naghadeh SB, Li C, et al. Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Sci China Mater, 2018, 61: 839–850

    CAS  Google Scholar 

  240. Gong L, Yan L, Zhou R, et al. Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J Mater Chem B, 2017, 5: 1873–1895

    CAS  Google Scholar 

  241. Ponraj JS, Xu ZQ, Dhanabalan SC, et al. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27: 462001

    Google Scholar 

  242. Chen L, Feng W, Zhou X, et al. Facile synthesis of novel albumin-functionalized flower-like MoS2 nanoparticles for in vitro chemophotothermal synergistic therapy. RSC Adv, 2016, 6: 13040–13049

    CAS  Google Scholar 

  243. Liu T, Wang C, Cui W, et al. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale, 2014, 6: 11219–11225

    CAS  Google Scholar 

  244. Liu J, Li F, Zheng J, et al. Redox/NIR dual-responsive MoS2 for synergetic chemo-photothermal therapy of cancer. J Nanobiotechnol, 2019, 17: 78

    Google Scholar 

  245. Meng X, Liu Z, Cao Y, et al. Fabricating aptamer-conjugated PEGylated-MoS2/Cu18S theranostic nanoplatform for multiplexed imaging diagnosis and chemo-photothermal therapy of cancer Adv Funct Mater, 2017, 27: 1605592

    Google Scholar 

  246. Geng B, Qin H, Zheng F, et al. Carbon dot-sensitized MoS2 nanosheet heterojunctions as highly efficient NIR photothermal agents for complete tumor ablation at an ultralow laser exposure Nanoscale, 2019, 11: 7209–7220

    CAS  Google Scholar 

  247. Xu S, Li D, Wu P. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction Adv Funct Mater, 2015, 25: 1127–1136

    CAS  Google Scholar 

  248. Wang J, Tan X, Pang X, et al. MoS2 quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy ACS Appl Mater Interfaces, 2016, 8: 24331–24338

    CAS  Google Scholar 

  249. Zhang A, Li A, Zhao W, et al. An efficient and self-guided chemophotothermal drug loading system based on copolymer and transferrin decorated MoS2 nanodots for dually controlled drug release Chem Eng J, 2018, 342: 120–132

    CAS  Google Scholar 

  250. Song X, Shang W, Peng L, et al. Novel GPC3-binding WS2-Ga3+-PEG-peptide nanosheets for in vivo bimodal imaging-guided photothermal therapy Nanomedicine, 2018, 13: 1681–1693

    CAS  Google Scholar 

  251. Yang G, Zhang R, Liang C, et al. Manganese dioxide coated WS2@Fe3O4/sSiO2 nanocomposites for pH-responsive MR imaging and oxygen-elevated synergetic therapy Small, 2018, 14: 1702664

    Google Scholar 

  252. Wu C, Wang S, Zhao J, et al. Biodegradable Fe(III)@WS2-PVP nanocapsules for redox reaction and TME-enhanced nanocatalytic, photothermal, and chemotherapy Adv Funct Mater, 2019, 29: 1901722

    Google Scholar 

  253. Wang Y, Zhao J, Chen Z, et al. Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials, 2019, 217: 119282

    CAS  Google Scholar 

  254. Xie H, Li Z, Sun Z, et al. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy Small, 2016, 12: 4136–4145

    CAS  Google Scholar 

  255. Sun L, Hou M, Zhang L, et al. PEGylated mesoporous Bi2S3 nanostars loaded with chlorin e6 and doxorubicin for fluorescence/CT imaging-guided multimodal therapy of cancer Nanomed-Nanotechnol Biol Med, 2019, 17: 1–12

    Google Scholar 

  256. Bai J, Jia X, Ruan Y, et al. Photosensitizer-conjugated Bi2Te3 nanosheets as theranostic agent for synergistic photothermal and photodynamic therapy. Inorg Chem, 2018, 57: 10180–10188

    CAS  Google Scholar 

  257. Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nat Phys, 2009, 5: 398–402

    CAS  Google Scholar 

  258. Li J, Jiang F, Yang B, et al. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci Rep, 2013, 3: 1998

    Google Scholar 

  259. Cheng L, Shen S, Shi S, et al. FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv Funct Mater, 2016, 26: 2185–2197

    CAS  Google Scholar 

  260. Du J, Gu Z, Yan L, et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv Mater, 2017, 29: 1701268

    Google Scholar 

  261. Shao J, Xie H, Wang H, et al. 2D material-based nanofibrous membrane for photothermal cancer therapy. ACS Appl Mater Interfaces, 2018, 10: 1155–1163

    CAS  Google Scholar 

  262. Dai C, Lin H, Xu G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem Mater, 2017, 29: 8637–8652

    CAS  Google Scholar 

  263. Huang K, Li Z, Lin J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev, 2018, 47: 5109–5124

    CAS  Google Scholar 

  264. Lin H, Wang X, Yu L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett, 2017, 17: 384–391

    CAS  Google Scholar 

  265. Xing C, Chen S, Liang X, et al. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl Mater Interfaces, 2018, 10: 27631–27643

    CAS  Google Scholar 

  266. Lin H, Wang Y, Gao S, et al. Theranostic 2D tantalum carbide (MXene). Adv Mater, 2018, 30: 1703284

    Google Scholar 

  267. Yu X, Cai X, Cui H, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9: 17859–17864

    CAS  Google Scholar 

  268. Xiao F, Naficy S, Casillas G, et al. Edge-hydroxylated boron nitride nanosheets as an effective additive to improve the thermal response of hydrogels. Adv Mater, 2015, 27: 7196–7203

    CAS  Google Scholar 

  269. Weng Q, Wang B, Wang X, et al. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano, 2014, 8: 6123–6130

    CAS  Google Scholar 

  270. Sharker SM, Alam MA, Shill MC, et al. Functionalized hBN as targeted photothermal chemotherapy for complete eradication of cancer cells. Int J Pharm, 2017, 534: 206–212

    CAS  Google Scholar 

  271. Zhang Y, Guo R, Wang D, et al. Pd nanoparticle-decorated hydroxy boron nitride nanosheets as a novel drug carrier for chemo-photothermal therapy. Colloid Surface B-Biointerfaces, 2019, 176: 300–308

    CAS  Google Scholar 

  272. Usman MS, Hussein MZ, Fakurazi S, et al. Gadolinium-based layered double hydroxide and graphene oxide nano-carriers for magnetic resonance imaging and drug delivery. Chem Central J, 2017, 11: 47

    CAS  Google Scholar 

  273. Ruan Y, Jia X, Wang C, et al. Mn-Fe layered double hydroxide nanosheets: A new photothermal nanocarrier for O2-evolving phototherapy. Chem Commun, 2018, 54: 11729–11732

    CAS  Google Scholar 

  274. Guan S, Weng Y, Li M, et al. An NIR-sensitive layered supramolecular nanovehicle for combined dual-modal imaging and synergistic therapy. Nanoscale, 2017, 9: 10367–10374

    CAS  Google Scholar 

  275. Li B, Tang J, Chen W, et al. Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy. Biomaterials, 2018, 177: 40–51

    CAS  Google Scholar 

  276. Lan G, Ni K, Lin W. Nanoscale metal-organic frameworks for phototherapy of cancer. Coord Chem Rev, 2019, 379: 65–81

    CAS  Google Scholar 

  277. Fu G, Liu W, Feng S, et al. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem Commun, 2012, 48: 11567–11569

    CAS  Google Scholar 

  278. Wang D, Zhou J, Chen R, et al. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials, 2016, 100: 27–40

    CAS  Google Scholar 

  279. Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc, 2013, 46: 24–29

    Google Scholar 

  280. Kessel D, Oleinick NL. Photodynamic therapy and cell death pathways. In: Gomer C (ed.). Photodynamic Therapy. Methods in Molecular Biology (Methods and Protocols). Totowa: Humana Press, 2010, 635

    Google Scholar 

  281. Kataoka H, Nishie H, Hayashi N, et al. New photodynamic therapy with next-generation photosensitizers. Ann Transl Med, 2017, 5: 183

    Google Scholar 

  282. Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy: Mechanisms, photosensitizers and combinations. Biomed Pharmacother, 2018, 106: 1098–1107

    CAS  Google Scholar 

  283. Solban N, Rizvi I, Hasan T. Targeted photodynamic therapy. Lasers Surg Med, 2006, 38: 522–531

    Google Scholar 

  284. Guan Q, Li YA, Li WY, et al. Photodynamic therapy based on nanoscale metal-organic frameworks: From material design to cancer nanotherapeutics. Chem Asian J, 2018, 13: 3122–3149

    CAS  Google Scholar 

  285. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev, 2015, 115: 1990–2042

    CAS  Google Scholar 

  286. Wang M, Hou Z, Al Kheraif AA, et al. Mini review of TiO2-based multifunctional nanocomposites for near-infrared light-responsive phototherapy. Adv Healthc Mater, 2018, 7: 1800351

    Google Scholar 

  287. Wu M, Li Z, Yao J, et al. Pea protein/gold nanocluster/indocyanine green ternary hybrid for near-infrared fluorescence/computed tomography dual-modal imaging and synergistic photodynamic/photothermal therapy. ACS Biomater Sci Eng, 2019, 5: 4799–4807

    CAS  Google Scholar 

  288. Yang Y, Hu Y, Du H, et al. Colloidal plasmonic gold nanoparticles and gold nanorings: Shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Int J Nanomed, 2018, 13: 2065–2078

    CAS  Google Scholar 

  289. Jia X, Ye HN, Weng H, et al. Small molecular target-based multifunctional upconversion nanocomposites for targeted and in-depth photodynamic and chemo-anticancer therapy. Mater Sci Eng-C, 2019, 104: 109849

    CAS  Google Scholar 

  290. Zhao J, Duan L, Wang A, et al. Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. WIREs Nanomed Nanobiotechnol, 2020, 12: e1583

    CAS  Google Scholar 

  291. Parekh G, Shi Y, Zheng J, et al. Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther Deliv, 2018, 9: 451–468

    CAS  Google Scholar 

  292. Wei Z, Liang P, Xie J, et al. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem Sci, 2019, 10: 2778–2784

    CAS  Google Scholar 

  293. Ge J, Lan M, Zhou B, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun, 2014, 5: 4596

    CAS  Google Scholar 

  294. Zhang D, Wen L, Huang R, et al. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials, 2018, 153: 14–26

    CAS  Google Scholar 

  295. Dong HQ, Zhao ZL, Wen HY, et al. Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Sci China Chem, 2010, 53: 2265–2271

    CAS  Google Scholar 

  296. Tian B, Wang C, Zhang S, et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano, 2011, 5: 7000–7009

    CAS  Google Scholar 

  297. Patel SC, Lee S, Lalwani G, et al. Graphene-based platforms for cancer therapeutics. Ther Deliv, 2016, 7: 101–116

    CAS  Google Scholar 

  298. Youssef Z, Vanderesse R, Colombeau L, et al. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nano, 2017, 8: 6

    Google Scholar 

  299. Sun X, Zebibula A, Dong X, et al. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS Appl Mater Interfaces, 2018, 10: 25037–25046

    CAS  Google Scholar 

  300. Zaharie-Butucel D, Potara M, Suarasan S, et al. Efficient combined near-infrared-triggered therapy: Phototherapy over chemotherapy in chitosan-reduced graphene oxide-IR820 dyedoxorubicin nanoplatforms. J Colloid Interface Sci, 2019, 552: 218–229

    CAS  Google Scholar 

  301. Tabish TA, Scotton CJ, JFerguson DC, et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine, 2018, 13: 1923–1937

    CAS  Google Scholar 

  302. Liu Y, Xu Y, Geng X, et al. Synergistic targeting and efficient photodynamic therapy based on graphene oxide quantum dotupconversion nanocrystal hybrid nanoparticles. Small, 2018, 14: 1800293

    Google Scholar 

  303. Wu C, Guan X, Xu J, et al. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials, 2019, 205: 106–119

    CAS  Google Scholar 

  304. Zhang D, Lin Z, Lan S, et al. The design of Janus black phos-phorus quantum dots@metal-organic nanoparticles for simultaneously enhancing environmental stability and photodynamic therapy efficiency. Mater Chem Front, 2019, 3: 656–663

    CAS  Google Scholar 

  305. Huang H, He L, Zhou W, et al. Stable black phosphorus/Bi2O3 heterostructures for synergistic cancer radiotherapy. Biomaterials, 2018, 171: 12–22

    CAS  Google Scholar 

  306. Tang X, Chen H, Ponraj JS, et al. Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots. Adv Sci, 2018, 5: 1800420

    Google Scholar 

  307. Liu J, Yu M, Zhou C, et al. Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater Today, 2013, 16: 477–486

    CAS  Google Scholar 

  308. Dang J, He H, Chen D, et al. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater Sci, 2017, 5: 1500–1511

    CAS  Google Scholar 

  309. Lv Z, Wei H, Li Q, et al. Achieving efficient photodynamic therapy under both normoxia and hypoxia using cyclometalated Ru(II) photosensitizer through type I photochemical process. Chem Sci, 2018, 9: 502–512

    CAS  Google Scholar 

  310. Liu J, Du P, Mao H, et al. Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials, 2018, 172: 83–91

    Google Scholar 

  311. Liu J, Du P, Liu T, et al. A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement and feedback. Biomaterials, 2019, 192: 179–188

    CAS  Google Scholar 

  312. Liu B, Li C, Chen G, et al. Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv Sci, 2017, 4: 1600540

    Google Scholar 

  313. Han J, Xia H, Wu Y, et al. Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy. Nanoscale, 2016, 8: 7861–7865

    CAS  Google Scholar 

  314. Liu L, Wang J, Tan X, et al. Photosensitizer loaded PEG-MoS2-Au hybrids for CT/NIRF imaging-guided stepwise photothermal and photodynamic therapy. J Mater Chem B, 2017, 5: 2286–2296

    CAS  Google Scholar 

  315. Li P, Liu L, Lu Q, et al. Ultrasmall MoS2 nanodots-doped biodegradable SiO2 nanoparticles for clearable FL/CT/MSOT imaging-guided PTT/PDT combination tumor therapy. ACS Appl Mater Interfaces, 2019, 11: 5771–5781

    CAS  Google Scholar 

  316. Wang J, Pang X, Tan X, et al. A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated WS2 nanodots. Nanoscale, 2017, 9: 5551–5564

    CAS  Google Scholar 

  317. Liu G, Zou J, Tang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces, 2017, 9: 40077–40086

    CAS  Google Scholar 

  318. Mei X, Wang W, Yan L, et al. Hydrotalcite monolayer toward high performance synergistic dual-modal imaging and cancer therapy. Biomaterials, 2018, 165: 14–24

    CAS  Google Scholar 

  319. Li X, Zheng BY, Ke MR, et al. A tumor-pH-responsive supramolecular photosensitizer for activatable photodynamic therapy with minimal in vivo skin phototoxicity. Theranostics, 2017, 7: 2746–2756

    CAS  Google Scholar 

  320. Yan L, Wang Y, Hu T, et al. Layered double hydroxide nanosheets: Towards ultrasensitive tumor microenvironment responsive synergistic therapy. J Mater Chem B, 2020, 8: 1445–1455

    CAS  Google Scholar 

  321. Lu K, He C, Lin W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J Am Chem Soc, 2014, 136: 16712–16715

    CAS  Google Scholar 

  322. Shi Z, Zhang K, Zada S, et al. Upconversion nanoparticle-induced multimode photodynamic therapy based on a metal-organic framework/titanium dioxide nanocomposite. ACS Appl Mater Interfaces, 2020, 12: 12600–12608

    Google Scholar 

  323. Wang D, Wu H, Lim WQ, et al. A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy. Adv Mater, 2019, 31: 1901893

    Google Scholar 

  324. Zeng JY, Zou MZ, Zhang M, et al. π-Extended benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis. ACS Nano, 2018, 12: 4630–4640

    CAS  Google Scholar 

  325. Wang H, Chen Y, Wang H, et al. DNAzyme-loaded metal-organic frameworks (MOFs) for self-sufficient gene therapy. Angew Chem Int Ed, 2019, 58: 7380–7384

    CAS  Google Scholar 

  326. Hu X, Lu Y, Zhou L, et al. Post-synthesis strategy to integrate porphyrinic metal-organic frameworks with CuS NPs for synergistic enhanced photo-therapy. J Mater Chem B, 2020, 8: 935–944

    CAS  Google Scholar 

  327. Pan X, Wang H, Wang S, et al. Sonodynamic therapy (SDT): A novel strategy for cancer nanotheranostics. Sci China Life Sci, 2018, 61: 415–426

    Google Scholar 

  328. Pang X, Xu C, Jiang Y, et al. Natural products in the discovery of novel sonosensitizers. Pharmacol Ther, 2016, 162: 144–151

    CAS  Google Scholar 

  329. Pecha R, Gompf B. Microimplosions: Cavitation collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett, 2000, 84: 1328–1330

    CAS  Google Scholar 

  330. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer, 2005, 5: 321–327

    CAS  Google Scholar 

  331. Xu J, Xu L, Wang C, et al. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano, 2017, 11: 4463–4474

    CAS  Google Scholar 

  332. Trendowski M. The promise of sonodynamic therapy. Cancer Metast Rev, 2014, 33: 143–160

    CAS  Google Scholar 

  333. Liu R, Zhang Q, Lang Y, et al. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagn Photodyn Ther, 2017, 19: 159–166

    Google Scholar 

  334. Chen H, Zhou X, Gao Y, et al. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today, 2014, 19: 502–509

    CAS  Google Scholar 

  335. Qian X, Zheng Y, Chen Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv Mater, 2016, 28: 8097–8129

    CAS  Google Scholar 

  336. Xu H, Zhang X, Han R, et al. Nanoparticles in sonodynamic therapy: State of the art review. RSC Adv, 2016, 6: 50697–50705

    CAS  Google Scholar 

  337. Liu Z, Wang D, Li J, et al. Self-assembled peptido-nanomicelles as an engineered formulation for synergy-enhanced combinational SDT, PDT and chemotherapy to nasopharyngeal carcinoma. Chem Commun, 2019, 55: 10226–10229

    CAS  Google Scholar 

  338. Wang Z, Liu C, Zhao Y, et al. Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria. Chem Eng J, 2019, 356: 811–818

    CAS  Google Scholar 

  339. Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev, 2016, 45: 1457–1501

    CAS  Google Scholar 

  340. Yang HW, Hua MY, Hwang TL, et al. Non-invasive synergistic treatment of brain tumors by targeted chemotherapeutic delivery and amplified focused ultrasound-hyperthermia using magnetic nanographene oxide. Adv Mater, 2013, 25: 3605–3611

    CAS  Google Scholar 

  341. Chen YW, Liu TY, Chang PH, et al. A theranostic nrGO@MSNION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale, 2016, 8: 12648–12657

    CAS  Google Scholar 

  342. Dai C, Zhang S, Liu Z, et al. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano, 2017, 11: 9467–9480

    CAS  Google Scholar 

  343. Fang C, Jia H, Chang S, et al. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ Sci, 2014, 7: 3431–3438

    CAS  Google Scholar 

  344. Ma L, Huang Y, Hou M, et al. Ag nanorods coated with ultrathin TiO2 shells as stable and recyclable sers substrates. Sci Rep, 2015, 5: 15442

    CAS  Google Scholar 

  345. Deepagan VG, You DG, Um W, et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett, 2016, 16: 6257–6264

    CAS  Google Scholar 

  346. Gao F, He G, Yin H, et al. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nanoscale, 2019, 11: 2374–2384

    CAS  Google Scholar 

  347. Chen J, Qiu F, Xu W, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl Catal A-Gen, 2015, 495: 131–140

    CAS  Google Scholar 

  348. Ratanatawanate C, Chyao A, Balkus Jr. KJ. S-nitrosocysteinedecorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen. J Am Chem Soc, 2011, 133: 3492–3497

    CAS  Google Scholar 

  349. Chen L, Zhang C, Li L, et al. Ultrafast carrier dynamics and efficient triplet generation in black phosphorus quantum dots. J Phys Chem C, 2017, 121: 12972–12978

    CAS  Google Scholar 

  350. Ouyang J, Deng L, Chen W, et al. Two dimensional semiconductors for ultrasound-mediated cancer therapy: The case of black phosphorus nanosheets. Chem Commun, 2018, 54: 2874–2877

    CAS  Google Scholar 

  351. Guo T, Wu Y, Lin Y, et al. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small, 2018, 14: 1702815

    Google Scholar 

  352. Guo Z, Chen S, Wang Z, et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv Mater, 2017, 29: 1703811

    Google Scholar 

  353. Zhao Y, Wang H, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability. Angew Chem Int Ed, 2016, 55: 5003–5007

    CAS  Google Scholar 

  354. Hu T, Mei X, Wang Y, et al. Two-dimensional nanomaterials: Fascinating materials in biomedical field. Sci Bull, 2019, 64: 1707–1727

    CAS  Google Scholar 

  355. Lyu Q, Zhang J, Neoh KG, et al. A one step method for the functional and property modification of DOPA based nanocoatings. Nanoscale, 2017, 9: 12409–12415

    CAS  Google Scholar 

  356. Zhou W, Cui H, Ying L, et al. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angew Chem Int Ed, 2018, 57: 10268–10272

    CAS  Google Scholar 

  357. Krug HF, Wick P. Nanotoxicology: An interdisciplinary challenge. Angew Chem Int Ed, 2011, 50: 1260–1278

    CAS  Google Scholar 

  358. Peng F, Setyawati MI, Tee JK, et al. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol, 2019, 14: 279–286

    CAS  Google Scholar 

  359. Martins AF, Follmann HDM, Monteiro JP, et al. Polyelectrolyte complex containing silver nanoparticles with antitumor property on Caco-2 colon cancer cells. Int J Biol Macromol, 2015, 79: 748–755

    CAS  Google Scholar 

  360. Rao PV, Nallappan D, Madhavi K, et al. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longev, 2016, 2016: 1–15

    Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Research Development Program of China (2019YFB2203503), the National Natural Science Foundation of China (61875138, 61435010, 81972423 and 61961136001), Science and Technology Innovation Commission of Shenzhen (KQTD2015032416270385, JCYJ20170811093453105, JCYJ20180307164612205, JCYJ20170307144246792, GJHZ20180928160209731 and 202050345), the Clinical Research Startup Plan of Southern Medical University (LC2016YM018), Shenzhen Key Laboratory of Viral Oncology (ZDSYS201707311140430), the Grant of Sanming Medical Project (SM201702), and the Instrumental Analysis Center of Shenzhen University (Xili Campus).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang H and Hao Y provided the whole concept; Zhang H wrote the abstract, introduction and conclusion sections; Yang W and Lyu Q wrote the sections of 2D-nanomaterials for PDT, PTT, and SDT; Cao L summarized the references and Zhao J revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yi Hao  (郝轶) or Han Zhang  (张晗).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Wei Yang completed her BSc degree at Southern Medical University in 2012. Now she is pursuing her MSc degree in Southern Medical University, and her research interests focus on the biomedical applications of nanomaterials and development of functional nanostructures for cancer sonodynamic therapy.

Qinghua Lyu completed his BSc degree at China Pharmaceutical University and then obtained his PhD degree in the National University Singapore in 2019. He continued his academic research as a post-doctoral fellow in the School of Ophthalmology & Optometry Affiliated to Shenzhen University, and his research interests include medicinal chemistry, fabrication and modification of biomaterials and natural polymers for biomedical applications.

Yi Hao received his BSc degree at Xinjiang Medical University in 2004. He obtained his MSc degree at Xinjiang Medical University in 2009. Currently, he is a doctor in Shenzhen Hospital affiliated to Southern Medical University and his main research interests concern the ultrasonic diagnosis of tumor, modification and application of ultrasound microbubbles and nanomaterials in cancer therapy.

Han Zhang received his BSc degree from Wuhan University (2006) and PhD degree from Nanyang Technological University (2010). In 2012, he joined the College of Optoelectronic Engineering (Collaborative Innovation Centre for Optoelectronic Science Technology), Shenzhen University as a full professor. His current research is on the ultrafast, nonlinear photonics, and biomedicine of 2D materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Lyu, Q., Zhao, J. et al. Recent advance in near-infrared/ultrasound-sensitive 2D-nanomaterials for cancer therapeutics. Sci. China Mater. 63, 2397–2428 (2020). https://doi.org/10.1007/s40843-020-1387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1387-7

Keywords

Navigation