Skip to main content
Log in

Genetic Diversity and Infraspecific Relationships of Trifolium fragiferum L. in Iran

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Trifolium L. has around 255 species worldwide. Strawberry clover is one of the most valuable forage crops of the genus Trifolium with two varieties in Iran. In the current study, 40 individuals of eight natural populations of Trifolium fragiferum varieties were examined to reveal genetic diversity and infraspecific relationships with microsatellite markers. Based on five primer sets, a total of 11 alleles were obtained with an average of 2.2 alleles per locus. The polymorphic information content ranged from 0.0 to 0.517 with an average of 0.328. The observed and effective heterozygosity across all loci changed from 0 to 1 and 0 to 0.596, respectively. The gene diversity among the loci varied from 0 to 0.530. Unweighted pair group method with arithmetic mean analyses based on Gower’s distance coefficient grouped accessions into five major clusters but did not separate 40 individuals of T. fragiferum var. fragiferum and T. fragiferum var. pulchellum in distinct groups. Results did not show any clear association between clusters and the geographical origin of varieties. Analysis of molecular variance indicated 84% of the total variation within populations. Genetic differentiation was low in the total population (FST = 0.1), while a high level of gene flow (Nm = 2.247) was estimated among populations. Microsatellite markers evidence suggests that two varieties should not remain separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul-Muneer PM (2014) Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int 2014:1–11

    Google Scholar 

  • Ahsyee RS, Vasiljevic S, Calic I, Zoric M, Karagic D et al (2014) Genetic diversity in red clover (Trifolium pratense L.) using ssr markers. Genetika 46:949–961

    Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Wiley, New York

    Google Scholar 

  • Berzina I, Zhuk A, Veinberga I, Rashal I, Rungis D (2008) Genetic fingerprinting of Latvian red clover (Trifolium pratense L.) cultivars using simple sequence repeat (SSR) markers: comparisons over time and space. Latv J Agron 11:28–32

    Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Google Scholar 

  • Conterato IF, Dall’ Agnol M, Schifino-Wittmann MT, Janke A (2012) Microsatellite diversity and chromosome number in natural populations of Trifolium riograndense Burkart. Sci Agric 69:114–118

    Google Scholar 

  • Conterato IF, Schifino-Wittmann MT, Guerrad D, Dall’Agnol M (2013) Amphicarpy in Trifolium argentinense: morphological characterization, seed production, reproductive behavior and life strategy. Aust J Bot 61:119–127

    Google Scholar 

  • Conterato IF, Schifino-Wittmann MT, Guerra D, Büttow MV, Dall’Agnol M et al (2018) Genetic diversity assessed by microsatellite markers in the amphicarpic species Trifolium polymorphum Poir. An Acad Bras Ciênc 90:1685–1693

    Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Google Scholar 

  • Dalla Rizza M, Real D, Reyno R, Porro V, Burgueno J et al (2007) Genetic diversity and DNA content of three South American and three Eurasiatic Trifolium species. Genet Mol Biol 30:1118–1124

    Google Scholar 

  • Davies WE, Young NR (1966) Self-fertility in Trifolium fragiferum. Heredity 21(4):615–624

    Google Scholar 

  • Dean DA, Wadl PA, Hadziabdic D, Wang X, Triqiano RN (2013) Analyzing microsatellites using the QIAxcel system. Methods Mol Biol 1006:223–243

    Google Scholar 

  • Dias PMB, Julier B, Sampoux J-P, Barre P, Dall’ Agnol M (2008) Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica 160:189–205

    Google Scholar 

  • Dugar YN, Popov VN (2013) Genetic structure and diversity of Ukrainian red clover cultivars revealed by microsatellite markers. Genetics 3:235–242

    Google Scholar 

  • El-Banna AL, Ghazy MMF (2017) Assessment of genetic components and genetic diversity of six Egyptian clover (Trifolium alexandrinum L.) genotypes using ISSR and URP markers. Egypt J Genet Cytol 46:313–328

    Google Scholar 

  • Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium—Leguminosae). Mol Phylogenet Evol 39(3):688–705

    Google Scholar 

  • Eslami Farouji A, Khodayari H, Assadi M, Özüdogru B, Çetin Ö et al (2018) Numerical taxonomy contributes to delimitation of Iranian and Turkish Hesperis L. (Brassicaceae) species. Phytotaxa 367:101–119

    Google Scholar 

  • Evans HJ (1962) Chromosome aberrations induced by ionizing radiations. In: Bourne GH, Danielli JF (eds) International review of cytology, vol 13. Academic Press, New York

    Google Scholar 

  • Gillet JM, Taylor NL (2001) The world of clovers (ed: Collins M). Iowa State University Press, Ames

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871. https://doi.org/10.2307/2528823

    Article  Google Scholar 

  • Grauda D, Avotins K, Fokina O, Kolodinska-Brantestam A, Rashal I (2015) Genetic diversity of white clover (Trifolium repens L.) from the urban area of Riga. Proc Latv Acad Sci Sect Bot 3:132–134

    Google Scholar 

  • Gupta M, Sharma V, Singh SK, Chahota RK, Sharma TR (2016) Analysis of genetic diversity and structure in a genebank collection of red clover (Trifolium pratense L.) using SSR markers. Plant Genet Resour 15(4):376–379

    Google Scholar 

  • Haerinasab M, Agahei P (2013) Phenetic analysis of Trifolium resupinatum L. (Persian clover) and Trifolium fragiferum L. (Strawberry clover) using new microsatellite loci. Taxon Biosyst J 5(14):41–51 (in Persian)

    Google Scholar 

  • Haerinasab M, Rahiminejad MR (2012) A taxonomic revision of the genus Trifolium L. sect. Fragifera Koch (Fabaceae) in Iran. Iran J Bot 18(1):22–30

    Google Scholar 

  • Haerinasab M, Rahiminejad MR, Ellison NW (2016) Transferability of simple sequence repeat (SSR) markers developed in red clover (Trifolium pratense L.) to some Trifolium species. Iran J Sci Technol Trans A Sci 40(1):59–62

    Google Scholar 

  • Hammer Ø, Harper D (2006) Paleontological data analysis. Blackwell Publishing, Oxford

    Google Scholar 

  • Hennink S, Zeven AC (1991) The interpretation of Nei and Shannon-Weaver within population variation indices. Euphytica 51:235–240

    Google Scholar 

  • Hesamzadeh Hejazi SM, Ziaenasab M (2006) Karyological study on some species of Trifolium genus in Iran. Iran J Bot 39(4):147–151

    Google Scholar 

  • Issolah R, Abdelguerfi A (1999) Chromosome numbers within some spontaneous populations of 10 Trifolium species in Algeria. Caryologia 52(3–4):151–154

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49(4):725

    Google Scholar 

  • Kölliker R, Jones ES, Drayton MC, Dupal MP, Forster JW (2001) Development and characterization of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet 102:416–424

    Google Scholar 

  • Lefort F, Douglas GC (1999) An efficient micro-method of DNA isolation from mature leaves of four hardwood tree species Acer, Fraxinus, Prunus and Quercus. Ann For Sci 56(3):259–263

    Google Scholar 

  • Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94

    MathSciNet  MATH  Google Scholar 

  • Lewontin R (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  • Liu K, Muse S (2004) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Google Scholar 

  • Martina S (2007) New microsatellite loci for red clover (Trifolium pratense L.) and study its polymorphism. In: XXVIIth Proceeding of the Eucarpia symposium on improvement of fodder crops and amenity grasses, Copenhagen, pp 217–219

  • Martins K, Santos JD, Gaiotto FA, Moreno MA, Kageyama PY (2008) Population genetic structure of Copaifera langsdorffii Desf. (Leguminosae–Caesalpinioideae) in forest fragments in “Pontal do Paranapanema”, SP, Brazil. Braz J Bot 31:61–69 (in Portuguese, with abstract in English)

    Google Scholar 

  • Morley FHW (1963) The mode of pollination in strawberry clover (Trifolium fragiferum). Aust J Exp Agric 3(8):5–8

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70(12):3321–3323

    MATH  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Pagnotta MA, Annicchiarico P, Farina A, Proietti S (2011) Characterizing the molecular and morphophysiological diversity of Italian red clover. Euphytica 179(3):393–404

    Google Scholar 

  • Pathaichindachote W, Panyawut N, Sikaewtung K, Patarapuwadol S, Muangprom A (2019) Genetic diversity and allelic frequency of selected Thai and exotic rice germplasm using SSR markers. Rice Sci 26:393–403

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1(7):215–222

    Google Scholar 

  • QGIS Development Team (2017) QGIS geographic information system. Open source geospatial foundation project. http://qgis.osgeo.org. Accessed 25 July 2019

  • Radinovic I, Vasiljevic S, Brankovic G, Ahsyee RS, Momirovic U et al (2017) Molecular characterization of red clover genotypes utilizing microsatellite markers. Chil J Agr Res 77:41–47

    Google Scholar 

  • Rasouli M, Fattahi Moghaddam MR, Zamani Z, Eimani A, Ebadi A (2014) Evaluation of genetic relationships between almond (Prunus dulcis L) cultivars and genotypes using SSR markers. Iran J Hortic Sci 45(2):151–162

    Google Scholar 

  • Real D, Dalla Rizza M, Reyno R, Quesenberry KH (2007) Breeding system of the aerial flowers in an amphicarpic clover species: Trifolium polymorphum. Crop Sci 47:1401–1406

    Google Scholar 

  • Rosso BS, Pagano EM (2005) Evaluation of introduced and naturalized populations of red clover (Trifolium pratense L.) at Pergamino EEA-INTA, Argentina. Genet Resour Crop Evol 52:507–511

    Google Scholar 

  • Ryman N, Utter F, Hindar K (1995) Introgression, supportive breeding, and genetic conservation. In: Ballou JD, Gilpin M, Foose TJ (eds) Population management for survival and recovery. Columbia University Press, New York, pp 341–365

    Google Scholar 

  • Salimpour F, Sharifnia F, Mostafavi G, Hajrasoliha SH, Ukhneh E (2008) Chromosome counts and determination of ploidy levels in Iranian species of Trifolium. Chromosome Bot 3:53–63

    Google Scholar 

  • Santos CAF, Oliveira VR, Rodrigues MA, Ribeiro HLC (2010) Molecular characterization of onion cultivars using microsatellite markers. Pesqui Agropecu Bras 45:49–55 (in Portuguese, with abstract in English)

    Google Scholar 

  • Sato S, Isobe S, Asamizu E, Ohmido N, Kataoka R et al (2005) Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res 12(5):301–364. https://doi.org/10.1093/dnares/dsi018

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    MATH  Google Scholar 

  • Sharma R, Kumar B, Arora R, Ahlawat S, Mishra AK et al (2016) Genetic diversity estimates point to immediate efforts for conserving the endangered Tibetan sheep of India. Meta Gene 8:14–20

    Google Scholar 

  • Shen Z, Zhang K, Ma L, Duan J, Ao Y (2017) Analysis of the genetic relationships and diversity among 11 populations of Xanthoceras sorbifolia using phenotypic and microsatellite marker data. J Biotechnol 26:33–39

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43(7):1349–1368

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. W.H. Freeman and company press, San Francisco

    MATH  Google Scholar 

  • Stebbins GL Jr (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Taylor N, Gillett J (1988) Crossing and morphological relationships among Trifolium species closely related to Strawberry and Persian clover. Crop Sci 28(4):636–639

    Google Scholar 

  • Uslu E, Ertuğrul GD, Babac MT (2013) Assessment of genetic diversity in naturally growing 29 Trifolium L. taxa from Bolu Province using RAPD and SSR markers. Turk J Bot 37(4):479–490

    Google Scholar 

  • Vymyslicky T, Smarda P, Pelikan J, Cholastova T, Nedelnik J et al (2012) Evaluation of the Czech core collection of Trifolium pratense, including morphological, molecular and phytopathological data. Afr J Biotechnol 11:3583–3595

    Google Scholar 

  • Wright S (1964) The distribution of self-incompatibility alleles in populations. Evolution 18:609–619

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE, the user-friendly shareware for population genetic analysis. Molecular biology and biotechnology centre, University of Alberta, vol 10, pp 295–301

  • Yousefi S, Saeidi H, Assadi M (2018) Genetic diversity analysis of red clover (Trifolium pratense L.) in Iran using sequence related amplified polymorphism (SRAP) markers. J Agric Sci Technol 20:373–386

    Google Scholar 

  • Zhang X, Zhang Y-J, Yan R, Han J-G, Hong F et al (2010) Genetic variation of white clover (Trifolium repens L. collections from China detected by morphological traits, RAPD and SSR. Afr J Biotechnol 9:3032–3041

    Google Scholar 

  • Zohary M, Heller D (1984) The genus Trifolium. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

Download references

Acknowledgements

The authors of the current research would like to thank Payame Noor University and Shahid Bahonar University of Kerman for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Haerinasab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haerinasab, M., Ali-Farsangi, F., Bordbar, F. et al. Genetic Diversity and Infraspecific Relationships of Trifolium fragiferum L. in Iran. Iran J Sci Technol Trans Sci 44, 345–354 (2020). https://doi.org/10.1007/s40995-020-00834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-00834-2

Keywords

Navigation