Skip to main content
Log in

Hydrate morphology and mechanical behavior of hydrate-bearing sediments: a critical review

  • Review
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript
AbstractSection Abstract

Natural gas hydrate is a promising energy resource in the future because of its little contamination and huge reserve. However, gas exploitation may induce large deformation and failure of the seabed due to a reduction in the stiffness and strength of the hydrate-bearing sediment (HBS). Therefore, it is essential to investigate the mechanical behavior of the HBS for safe and efficient gas exploitation. Additionally, it is widely acknowledged that the hydrate morphology inherently affects the mechanical behavior of the HBS. This paper aims to critically synthesize the information on the hydrate morphology and mechanical behavior of the HBS available in the literature to facilitate the application of the research result into engineering practice and provide guidance for future investigation. Hydrate morphology is identified firstly both in natural and synthesized HBS. The similarities and differences of the hydrate morphology in the HBS synthesized using the excess-gas and excess-water methods are highlighted. The available experimental data on the small-strain stiffness, strength, and stress–strain behavior are critically selected and grouped into two categories based on the synthesizing methods. It has been creatively discovered that most mechanical parameters (e.g., bulk modulus, shear modulus, cohesion, dilation angle) share a concave power relationship with the hydrate saturation SH for the HBS synthesized using the excess-water method. While it is a convex power relationship for the bulk modulus, shear modulus, and dilation angle, and a linear relationship for the cohesion c when the HBS is synthesized using the excess-gas method. These observations contribute to establishing the conceptual model reflecting the particle-level failure mechanism of the HBS synthesized using different methods. Afterward, the creep behavior of the HBS, the reported constitutive models, the associated advantages and limitations of each model, and the mechanical response during hydrate dissociation (e.g., depressurization, thermal stimulation, carbon dioxide replacement), are summarized and discussed. It is expected that the state-of-the-art review can deepen our understanding of the mechanical behavior of the HBS and assist in the design of gas extraction programs without triggering potential geohazards.

AbstractSection Article highlights
  • Similarities and differences in the hydrate morphology of the HBS synthesized using the excess gas and excess water methods are clarified.

  • The experimental data on stiffness, strength and stress strain in the literature are critically selected and synthesized.

  • The influence of hydrate morphology on the mechanical behavior of the HBS is comprehensively analyzed.

  • The creep behavior and mechanical response to hydrate dissociation are summarized.

  • The constitutive equations on stiffness, strength and stress strain are summarized and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  • Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  • Andreassen K, Hubbard A, Winsborrow M, Patton H, Vadakkepuliyambatta S, Plaza-Faverola A, Bünz S (2017) Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science 356(6341):948–953

    Article  Google Scholar 

  • Bagherzadeh SA, Moudrakovski IL, Ripmeester JA, Englezos P (2011) Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles. Energy Fuels 25(7):3083–3092

    Article  Google Scholar 

  • Berge LI, Jacobsen KA, Solstad A (1999) Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration. J Geophys Res: Solid Earth 104(B7):15415–15424

    Article  Google Scholar 

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215

    Article  Google Scholar 

  • Brown HE, Holbrook WS, Hornbach MJ, Nealon J (2006) Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Mar Geol 229(3–4):179–186

    Article  Google Scholar 

  • Brugada J, Cheng YP, Soga K, Santamarina JC (2010) Discrete element modeling of geomechanical behavior of methane hydrate soils with pore-filling hydrate distribution. Granular Matter 12(5):517–525

    Article  Google Scholar 

  • Cameron I, Handa YP, Baker THW (1990) Compressive strength and creep behavior of hydrate-consolidated sand. Can Geotech J 27(2):255–258

    Article  Google Scholar 

  • Cascante G (1996) Low strain measurements with mechanical waves in geomaterials: experimental micromechanics. Ph.D. thesis, University of Waterloo, Ontario

  • Chaouachi M, Falenty A, Sell K, Enzmann F, Kersten M, Haberthür D, Kuhs WF (2015) Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy. Geochem Geophys Geosyst 16(6):1711–1722

    Article  Google Scholar 

  • Chen HL, Wei CF, Tian HH, Wei HZ (2018) Triaxial compression tests on gas saturated CO2-hydrate-bearing-sand. Rock Soil Mech 39(7):2395–2403

    Google Scholar 

  • Chen X, Espinoza DN (2018) Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate. Fuel 214:614–622

    Article  Google Scholar 

  • Choi JH, Dai S, Cha JH, Seol Y (2014) Laboratory formation of noncementing hydrates in sandy sediments. Geochem Geophys Geosyst 15(4):1648–1656

    Article  Google Scholar 

  • Choi JH, Dai S, Lin JS, Seol Y (2018) Multistage triaxial tests on laboratory-formed methane hydrate-bearing sediments. J Geophys Res: Solid Earth 123(5):3347–3357

    Article  Google Scholar 

  • Choi JH, Lin JS, Dai S, Lei L, Seol Y (2020) Triaxial compression of hydrate-bearing sediments undergoing hydrate dissociation by depressurization. Geomech Energy Environ 23:100187

    Article  Google Scholar 

  • Chong ZR, Yang M, Khoo BC, Linga P (2015) Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment. Ind Eng Chem Res 55(29):7981–7991

    Article  Google Scholar 

  • Clayton CRI, Priest JA, Best AI (2005) The effects of disseminated methane hydrate on the dynamic stiffness and damping of sand. Ge’otechnique 55(6):423–434

    Article  Google Scholar 

  • Clayton CRI, Priest JA, Rees EVL (2010) The effects of hydrate cement on the stiffness of some sands. Géotechnique 60(6):435–445

    Article  Google Scholar 

  • Cuccovillo T, Coop MR (1997) Yielding and pre-failure deformation of structured sands. Geotechnique 47(3):491–508

    Article  Google Scholar 

  • Dai S, Santamarina JC (2014) Sampling disturbance in hydrate-bearing sediment pressure cores: NGHP-01 expedition, Krishna-Godavari Basin example. Mar Pet Geol 58:178–186

    Article  Google Scholar 

  • Dai S, Santamarina JC, Waite WF, Kneafsey TJ (2012) Hydrate morphology: physical properties of sands with patchy hydrate saturation. J Geophys Res Solid Earth 117(B1):B11205

  • Dai S, Santamarina JC (2017) Stiffness evolution in frozen sands subjected to stress changes. J Geotech Geoenviron Eng 143(9):04017042

    Article  Google Scholar 

  • Deusner C, Gupta S, Xie XG, Leung YF, Uchida S, Kossel E, Haeckel M (2019) Strain rate-dependent hardening-softening characteristics of gas hydrate-bearing sediments. Geochem Geophys Geosyst 20(11):4885–4905

    Article  Google Scholar 

  • Duncan JM, Chang CY (1970) Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div 96(5):1629–1653

  • Durham WB, Kirby SH, Stern LA, Zhang W (2003a) The strength and rheology of methane clathrate hydrate. J Geophys Res: Solid Earth 108(B4):2182

  • Durham WB, Stern LA, Kirby SH (2003b) Ductile flow of methane hydrate. Can J Phys 81(1–2):373–380

    Article  Google Scholar 

  • Ebinuma T, Kamata Y, Minagawa H, Ohmura R, Nagao J, Narita H. 2005. Mechanical properties of sandy sediment containing methane hydrate. Fifth international conference on gas hydrates (ICGH 5), Trondheim (Norway), 12–16 Jun

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. John Wiley and Sons

    Book  Google Scholar 

  • Fredlund DG, Xing AQ (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532

  • Fujii T, Suzuki K, Takayama T, Tamaki M, Komatsu Y, Konno Y, Yoneda J, Yamamoto K, Nagao J (2015) Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. Mar Pet Geol 66:310–322

    Article  Google Scholar 

  • Gallipoli D, Gens A, Sharma R, Vaunat J (2003) An elastoplastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behavior. Géotechnique 53(1):123–135

    Article  Google Scholar 

  • Gens A, Nova R (1993) Conceptual bases for a constitutive model for bonded soils and weak rocks. In Geotechnical engineering of hard soils-soft rocks, pp 485–494

  • Ghiassian H, Grozic JLH (2013) Strength behavior of methane hydrate-bearing sand in undrained triaxial testing. Mar Pet Geol 43:310–319

    Article  Google Scholar 

  • Goto S, Matsubayashi O, Nagakubo S (2016) Simulation of gas hydrate dissociation caused by repeated tectonic uplift events. J Geophys Res: Solid Earth 121(5):3200–3219

    Article  Google Scholar 

  • Hamidi A, Haeri SM (2008) Stiffness and deformation characteristics of a cemented gravely sand. Int J Civ Eng 6(3):159–173

    Google Scholar 

  • Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils: design equations and curves. J Soil Mech Found Div 98(7):667–692

    Article  Google Scholar 

  • Hauge LP, Gauteplass J, Høyland MD, Ersland G, Kovscek A, Fernø MA (2016) Pore-level hydrate formation mechanisms using realistic rock structures in high-pressure silicon micromodels. Int J Greenhouse Gas Control 53:178–186

    Article  Google Scholar 

  • Helgerud MB, Dvorkin J, Nur A, Sakai A, Collett T (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26(13):2021–2024

    Article  Google Scholar 

  • Helgerud MB, Waite WF, Kirby SH, Nur A (2003) Measured temperature and pressure dependence of Vp and Vs in compacted, polycrystalline SI methane and SII methane hydrate. Can J Phys 81(1–2):47–53

    Article  Google Scholar 

  • Helgerud MB, Waite WF, Kirby SH, Nur A (2009) Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. J Geophys Res 114(B2):B02212

  • Horozal S, Bahk JJ, Urgeles R, Kim GY, Cukur D, Kim SP, Lee GH, Lee SH, Ryu BJ, Kim JH (2017) Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: potential linkage between the occurrence of mass failures and gas hydrate dissociation. Mar Pet Geol 80:171–191

    Article  Google Scholar 

  • Huang M, Shan HX, Liu LL, Li YL, Jia YG, Liu CL (2017) Triaxial test of unconsolidated hydrate sediment containing methane. J xi’an Shiyou Univ (natural Science Edition) 32(1):31–36

    Google Scholar 

  • Hyodo M, Norimasa Y, Ebinuma T (2005) Basic research on the mechanical behavior of methane hydrate-sediments mixture. Soils Found 45(1):75–85

    Google Scholar 

  • Hyodo M, Li Y, Yoneda J, Nakata Y, Yoshimoto N, Nishimura A, Song Y (2013a) Mechanical behavior of gas-saturated methane hydrate-bearing sediments. J Geophys Res: Solid Earth 118(10):5185–5194

    Article  Google Scholar 

  • Hyodo M, Yoneda J, Yoshimoto N, Nakata Y (2013b) Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found 53(2):299–314

    Article  Google Scholar 

  • Hyodo M, Li Y, Yoneda J, Nakata Y, Yoshimoto N, Kajiyama S, Nishimura A, Song Y (2014a) A comparative analysis of the mechanical behavior of carbon dioxide and methane hydrate-bearing sediments. Am Miner 99(1):178–183

    Article  Google Scholar 

  • Hyodo M, Li Y, Yoneda J, Nakata Y, Yoshimoto N, Nishimura A (2014b) Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments. Mar Pet Geol 51:52–62

    Article  Google Scholar 

  • Hyodo M, Wu Y, Nakashima K, Kajiyama S, Nakata Y (2017) Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments. J Geophys Res: Solid Earth 122(10):7511–7524

    Article  Google Scholar 

  • Iwai H, Konishi K, Saimyou S, Kimoto F, Oka (2018) Rate effect on the stress-strain relations of synthetic carbon dioxide hydrate-bearing sand and dissociation tests by thermal stimulation. Soils Found 58(5):1113–1132

  • Jiang M, Chen H, Tapias M, Arroyo M, Fang R (2014) Study of mechanical behavior and strain localization of methane hydrate-bearing sediments with different saturations by a new DEM model. Comput Geotech 57:122–138

    Article  Google Scholar 

  • Jiang M, Zhu F, Utili S (2015) Investigation into the effect of back pressure on the mechanical behavior of methane-hydrate-bearing sediments via DEM analyses. Comput Geotech 69:551–563

    Article  Google Scholar 

  • Jiang M, Liu J, Shen Z (2018) Investigating the mechanical behavior of grain-coating type methane hydrate-bearing sediment in true triaxial compression tests by distinct element method. Sci Sinica Phys Mech Astron 49(3):034613

  • Jin G, Xu T, Xin X, Wei M, Liu C (2016) Numerical evaluation of the methane production from unconfined gas hydrate-bearing sediment by thermal stimulation and depressurization in Shenhu area, South China Sea. J Nat Gas Sci Eng 33:497–508

    Article  Google Scholar 

  • Jin G, Lei H, Xu T, Xin X, Yuan Y, Xia Y, Juo J (2018) Simulated geomechanical responses to marine methane hydrate recovery using horizontal wells in the Shenhu area, South China Sea. Mar Pet Geol 92:424–436

    Article  Google Scholar 

  • Jin G, Lei H, Xu T, Liu L, Xin X, Zhai H, Liu C (2019) Seafloor subsidence induced by gas recovery from hydrate-bearing sediment using multiple-well system. Mar Pet Geol 107:438–450

    Article  Google Scholar 

  • Jung JW, Santamarina JC (2011) Hydrate adhesive and tensile strengths. Geochem Geophys Geosyst 12(8):Q08003

  • Jung JW, Santamarina JC (2012) Hydrate formation and growth in pores. J Cryst Growth 345(1):61–68

    Article  Google Scholar 

  • Jung JW, Santamarina JC, Soga K (2012) Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations. J Geophys Res Solid Earth 117:B04202

  • Kajiyama S, Hyodo M, Nishimura A (2016) Mechanical characteristics and localized deformation of Methane Hydrate-bearing sand using high-pressure plane strain shear tests. Jpn Geotechn Society Spec Publ 2(74):2549–2552

    Google Scholar 

  • Kajiyama S, Hyodo M, Nakata Y, Yoshimoto N, Wu Y, Kato A (2017a) Shear behavior of methane hydrate-bearing sand with various particle characteristics and fines. Soils Found 57(2):176–193

    Article  Google Scholar 

  • Kajiyama S, Wu Y, Hyodo M, Nakata Y, Nakashima K, Yoshimoto N (2017b) Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles. J Nat Gas Sci Eng 45:96–107

    Article  Google Scholar 

  • Kato A, Nakata Y, Hyodo M, Yoshimoto N (2016) Macro and micro behavior of methane hydrate-bearing sand subjected to plane strain compression. Soils Found 56(5):835–847

    Article  Google Scholar 

  • Kayen RE, Lee HJ (1991) Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin. Mar Geotechnol 10(1–2):125–141

    Article  Google Scholar 

  • Kerkar P, Jones KW, Kleinberg R, Lindquist WB, Tomov S, Feng H, Mahajan D (2009) Direct observations of three-dimensional growth of hydrates hosted in porous media. Appl Phys Lett 95(2):024102

  • Khalili N, Witt R, Laloui L, Vulliet L, Koliji A (2005) Effective stress in double porous media with two immiscible fluids. Geophys Res Lett 32(15):L15309

  • Kimoto S, Oka F, Fushita T (2010) A chemo–thermo–mechanically coupled analysis of ground deformation induced by gas hydrate dissociation. Int J Mech Sci 52(2):365–376

    Article  MATH  Google Scholar 

  • Klar A, Soga K, Ng MYA (2010) Coupled deformation–flow analysis for methane hydrate extraction. Géotechnique 60(10):765–776

    Article  Google Scholar 

  • Knott BC, Molinero V, Doherty MF, Peters B (2012) Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions. J Am Chem Soc 134(48):19544–19547

    Article  Google Scholar 

  • Konno Y, Jin Y, Yoneda J, Kida M, Egawa K, Ito T, Suzuki K, Nagao J (2015) Effect of methane hydrate morphology on compressional wave velocity of sandy sediments: analysis of pressure cores obtained in the Eastern Nankai Trough. Mar Pet Geol 66:425–433

    Article  Google Scholar 

  • Kvenvolden KA (1999) Potential effects of gas hydrate on human welfare. Proc Natl Acad Sci 96(7):3420–3426

    Article  Google Scholar 

  • Kumar A, Sakpal T, Roy S, Kumar R (2015) Methane hydrate formation in a test sediment of sand and clay at various levels of water saturation. Can J Chem 93(8):874–881

    Article  Google Scholar 

  • Kwon TH, Cho GC, Santamarina JC (2008) Gas hydrate dissociation in sediments: pressure-temperature evolution. Geochem Geophys Geosyst 9(3):Q03019

  • Lade PV, Trads N (2014) The role of cementation in the behavior of cemented soils. Geotech Res 1(4):111–132

    Article  Google Scholar 

  • Le TX, Aimedieu P, Bornert M, Chabot B, Rodts S, Tang AM (2019) Effect of temperature cycle on mechanical properties of methane hydrate-bearing sediment. Soils Found 59(4):814–827

    Article  Google Scholar 

  • Lee JS, Santamarina JC (2005) Bender elements: performance and signal interpretation. J Geotech Geoenviron Eng 131(9):1063–1070

    Article  Google Scholar 

  • Lee MW, Hutchinson DR, Collett TS, Dillon WP (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res: Solid Earth 101(B9):20347–20358

    Article  Google Scholar 

  • Lee JY, Santamarina JC, Ruppel C (2008) Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates. Mar Pet Geol 25(9):884–895

    Article  Google Scholar 

  • Lee JY, Santamarina JC, and Ruppel C (2010a) Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties. J Geophys Res 115(B11):B11104

  • Lee JY, Francisca FM, Santamarina JC, Ruppel C (2010b) Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties. J Geophys Res 115(B11):B11105

  • Lee JY, Santamarina JC, Ruppel C (2010c) Volume change associated with formation and dissociation of hydrate in sediment. Geochem Geophys Geosyst 11(3):03007

  • Lei L, Santamarina JC (2018) Laboratory strategies for hydrate formation in fine-grained sediments. J Geophys Res: Solid Earth 123(4):2583–2596

    Article  Google Scholar 

  • Lei L, Seol Y (2019) High-saturation gas hydrate reservoirs-a pore scale investigation of their formation from free gas and dissociation in sediments. J Geophys Res: Solid Earth 124(12):12430–12444

    Article  Google Scholar 

  • Lei L, Seol Y, Jarvis K (2018) Pore-scale visualization of methane hydrate-bearing sediments with micro-CT. Geophys Res Lett 45(11):5417–5426

    Article  Google Scholar 

  • Lei L, Liu Z, Seol Y, Boswell R, Dai S (2019a) An investigation of hydrate formation in unsaturated sediments using X-ray computed tomography. J Geophys Res: Solid Earth 124(4):3335–3349

    Article  Google Scholar 

  • Lei L, Seol Y, Choi JH, Kneafsey TJ (2019b) Pore habit of methane hydrate and its evolution in sediment matrix-Laboratory visualization with phase-contrast micro-CT. Mar Pet Geol 104:451–467

    Article  Google Scholar 

  • Lei L, Seol Y, Myshakin EM (2019c) Methane hydrate film thickening in porous media. Geophys Res Lett 46(20):11091–11099

    Article  Google Scholar 

  • Lei L, Seol Y (2020) Pore-scale investigation of methane hydrate-bearing sediments under triaxial condition. Geophys Res Lett 47(5):e2019GL086448

  • Lei L, Gai X, Seol Y (2020) Load-bearing characteristic of methane hydrate within coarse-grained sediments-Insights from isotropic consolidation. Mar Petrol Geol 121:104571

  • Leroueil S, Vaughan PR (1990) The general and congruent effects of structure in natural soils and weak rocks. Géotechnique 40(3):467–488

    Article  Google Scholar 

  • Li X, He S (2011) Progress instability analysis of submarine slopes considering dissociation of gas hydrates. Environ Earth Sci 66(3):741–747

    Article  Google Scholar 

  • Li Y, Song Y, Liu W, Yu F (2012) Experimental research on the mechanical properties of methane hydrate-ice mixtures. Energies 5(2):181–192

    Article  Google Scholar 

  • Li Y, Liu W, Song Y, Yang M, Zhao J (2016a) Creep behaviors of methane hydrate coexisting with ice. J Nat Gas Sci Eng 33:347–354

    Article  Google Scholar 

  • Li Y, Liu W, Zhu Y, Chen Y, Song Y, Li Q (2016b) Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods. Appl Energy 162:1627–1632

    Article  Google Scholar 

  • Li D, Wu Q, Wang Z, Lu J, Liang D, Li X (2018) Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization. Energies 11(7):1819

    Article  Google Scholar 

  • Li P, Xie W, Pak RY, Vanapalli SK (2019a) Microstructural evolution of loess soils from the Loess Plateau of China. CATENA 173:276–288

    Article  Google Scholar 

  • Li Y, Luo T, Sun X, Liu W, Li Q, Li Y, Song Y (2019a) Strength behaviors of remolded hydrate-bearing marine sediments in different drilling depths of the South China Sea. Energies 12(2):253

  • Li Y, Wu P, Liu W, Sun X, Cui Z, Song Y (2019b) A microfocus x-ray computed tomography-based gas hydrate triaxial testing apparatus. Rev Sci Instrum 90(5):055106

    Article  Google Scholar 

  • Li Y, Wu P, Sun X, Liu W, Song Y, Zhao J (2019c) Creep behaviors of methane hydrate-bearing frozen sediments. Energies 12(2):251

  • Liang S, Kusalik PG (2011) The mobility of water molecules through gas hydrates. J Am Chem Soc 133(6):1870–1876

    Article  Google Scholar 

  • Lin JS, Seol Y, Choi JH (2015) An SMP critical state model for methane hydrate-bearing sands. Int J Numer Anal Meth Geomech 39(9):969–987

    Article  Google Scholar 

  • Liu MD, Carter JP (2002) A structured Cam Clay model. Can Geotech J 39(6):1313–1332

    Article  Google Scholar 

  • Liu X, Flemings PB (2006) Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Earth Planet Sci Lett 241(1–2):211–226

    Article  Google Scholar 

  • Liu W, Zhao J, Luo Y, Song Y, Li Y, Yang M, Zhang Y, Liu Y, Wang D (2013) Experimental measurements of mechanical properties of carbon dioxide hydrate-bearing sediments. Mar Pet Geol 46:201–209

    Article  Google Scholar 

  • Liu W, Luo T, Li Y, Song Y, Zhu Y, Liu Y, Zhao J, Wu Z, Xu X (2016) Experimental study on the mechanical properties of sediments containing CH4 and CO2 hydrate mixtures. J Nat Gas Sci Eng 32:20–27

    Article  Google Scholar 

  • Liu Z, Wei H, Peng L, Wei C, Ning F (2017) An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test. J Petrol Sci Eng 149:56–64

    Article  Google Scholar 

  • Liu Z, Kim J, Lei L, Ning F, Dai S (2019) Tetrahydrofuran hydrate in clayey sediments—laboratory formation, morphology, and wave characterization. J Geophys Res: Solid Earth 124(4):3307–3319

    Article  Google Scholar 

  • Lu N, Likos WJ (2004) Unsaturated soil mechanics. Wiley

  • Lu XB, Chen XD, Lu L, Zhang XH (2017) Numerical simulation on the marine landslide due to gas hydrate dissociation. Environ Earth Sci 76(4):1–9

  • Luo T, Song Y, Zhu Y, Liu W, Liu Y, Li Y, Wu Z (2016) Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea. Mar Pet Geol 77:507–514

    Article  Google Scholar 

  • Luo T, Li Y, Sun X, Shen S, Wu P (2018) Effect of sediment particle size on the mechanical properties of CH4 hydrate-bearing sediments. J Petrol Sci Eng 171:302–314

    Article  Google Scholar 

  • Luo T, Li Y, Madhusudhan BN, Sun X, Song Y (2020a) Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery. Appl Energy 276:115468

  • Luo T, Li Y, Madhusudhan BN, Zhao J, Song Y (2020b) Comparative analysis of the consolidation and shear behaviors of CH4 and CO2 hydrate-bearing silty sediments. J Nat Gas Sci Eng 75:103157

  • Mahabadi N, Dai S, Seol Y, Yun T, Jang J (2016a) The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation. Geochem Geophys Geosyst 17(8):3099–3110

    Article  Google Scholar 

  • Mahabadi N, Zheng X, Jang J (2016b) The effect of hydrate saturation on water retention curves in hydrate-bearing sediments. Geophys Res Lett 43(9):4279–4287

    Article  Google Scholar 

  • Makogon YF (2010) Natural gas hydrates–a promising source of energy. J Nat Gas Sci Eng 2(1):49–59

    Article  Google Scholar 

  • Malagar BR, Lijith KP, Singh DN (2019) Formation and dissociation of methane gas hydrates in sediments: a critical review. J Nat Gas Sci Eng 65:168–184

    Article  Google Scholar 

  • Marín-Moreno H, Sahoo SK, Best AI (2017) Theoretical modeling insights into elastic wave attenuation mechanisms in marine sediments with pore-filling methane hydrate. J Geophys Res Solid Earth 122(3):1835–1847

  • Masui A, Haneda H, Ogata Y, Aoki K (2005) The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments. In: Fifth international conference on gas hydrates, pp 657–663, Tapir Acad., Trondheim, Norway

  • Masui A, Haneda H, Ogata Y, Aoki K (2006) Triaxial compression test on submarine sediment containing methane hydrate in the deep sea off the coast of Japan (in Japanese), paper presented at the 41st Annual Conference, Jpn. Geotech. Soc., Kagoshima, Japan, 12–14 July

  • Masui A, Haneda H, Ogata Y, Aoki K (2007) Mechanical properties of sandy sediment containing marine gas hydrates in deep-sea offshore Japan. International Society of Offshore and Polar Engineers, In Seventh ISOPE Ocean Mining Symposium

    Google Scholar 

  • Meyer DW, Flemings PB, DiCarlo D (2018a) Effect of gas flow rate on hydrate formation within the hydrate stability zone. J Geophys Res: Solid Earth 123(8):6263–6276

    Article  Google Scholar 

  • Meyer DW, Flemings PB, DiCarlo D, You K, Phillips SC, Kneafsey TJ (2018b) Experimental investigation of gas flow and hydrate formation within the hydrate stability zone. J Geophys Res: Solid Earth 123(7):5350–5371

    Article  Google Scholar 

  • Miyazaki K, Yamaguchi T, Sakamoto Y, Tenma N, Ogata YJ, Aoki K (2010) Effect of confining pressure on mechanical properties of sediment containing synthetic methane hydrate. J Min Mater ProcessInst Jpn 126:408–417

    Google Scholar 

  • Miyazaki K, Masui A, Sakamoto Y, Aoki K, Tenma N, Yamaguchi T (2011a) Triaxial compressive properties of artificial methane-hydrate-bearing sediment. J Geophys Res 116(B6):B06102

  • Miyazaki K, Yamaguchi T, Sakamoto Y, Aoki K (2011b) Time-dependent behaviors of methane-hydrate bearing sediments in triaxial compression test. Int J Jpn Committee Rock Mech 7(1):43–48

    Google Scholar 

  • Miyazaki K, Tenma N, Aoki K, Yamaguchi T (2012) A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples. Energies 5(10):4057–4075

    Article  Google Scholar 

  • Miyazaki K, Oikawa Y, Haneda H, Yamaguchi T (2016) Triaxial compressive property of artificial CO2-hydrate sand. Int J Offshore Polar Eng 26(03):315–320

    Article  Google Scholar 

  • Miyazaki K, Tenma N, Yamaguchi T (2017) Relationship between creep property and loading-rate dependence of strength of artificial methane-hydrate-bearing Toyoura Sand under triaxial compression. Energies 10(10):1466

  • Murphy ZW, DiCarlo DA, Flemings PB, Daigle H (2020) Hydrate is a nonwetting phase in porous media. Geophys Res Lett 47(16):e2020GL089289

  • Nova R, Castellanza R, Tamagnini C (2003) A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. Int J Numer Anal Meth Geomech 27(9):705–732

    Article  MATH  Google Scholar 

  • Nixon MF, Grozic JL (2007) Submarine slope failure due to gas hydrate dissociation: a preliminary quantification. Can Geotech J 44(3):314–325

    Article  Google Scholar 

  • Page AJ, Sear RP (2006) Heterogeneous nucleation in and out of pores. Phys Rev Lett 97(6):065701

    Article  Google Scholar 

  • Peters A (2013) Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour Res 49(10):6765–6780

    Article  Google Scholar 

  • Pinkert S, Grozic JLH (2014a) Failure mechanisms in cemented hydrate-bearing sands. J Chem Eng Data 60(2):376–382

    Article  Google Scholar 

  • Pinkert S, Grozic JLH (2014b) Prediction of the mechanical response of hydrate-bearing sands. J Geophys Res Solid Earth 119(6):4695–4707

    Article  Google Scholar 

  • Pinkert S, Grozic JLH (2016) Experimental verification of a prediction model for hydrate-bearing sand. J Geophys Rese: Solid Earth 121(6):4147–4155

    Article  Google Scholar 

  • Pinkert S, Grozic JLH, Priest JA (2015) Strain-softening model for hydrate-bearing sands. Int J Geomech 15(6):04015007

  • Priest JA, Best AI, Clayton CRI (2005) A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J Geophys Res Solid Earth 110(B4):B04102

  • Priest JA., Rees EVL, Clayton CRI (2009) Influence of gas hydrate morphology on the seismic velocities of sands. J Geophys Res Solid Earth 114(B11):B11205

  • Priest JA, Druce M, Roberts J, Schultheiss P, Nakatsuka Y, Suzuki K (2015) PCATS Triaxial: a new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan. Mar Pet Geol 66:460–470

    Article  Google Scholar 

  • Romero E, Della Vecchia G, Jommi C (2011) An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4):313–328

    Article  Google Scholar 

  • Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168

    Article  Google Scholar 

  • Sánchez M, Gai X, Santamarina JC (2017) A constitutive mechanical model for gas hydrate-bearing sediments incorporating inelastic mechanisms. Comput Geotech 84:28–46

    Article  Google Scholar 

  • Santamarina JC, Ruppel C (2010) The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay, geophysical characterization of gas hydrates, pp 373–384

  • Santamarina JC, Dai S, Terzariol M, Jang J, Waite WF, Winters WJ, Nagao J, Yoneda J, Konno Y, Fujii T, Suzuki K (2015) Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough. Mar Pet Geol 66:434–450

    Article  Google Scholar 

  • Schindler M, Batzle ML, Prasad M (2016) Micro X-ray computed tomography imaging and ultrasonic velocity measurements in tetrahydrofuran-hydrate-bearing sediments. Geophys Prospect 65(4):1025–1036

    Article  Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71(1–3):1–10

    Article  Google Scholar 

  • Scholz NA, Riedel M, Spence GD, Hyndman RD, James T, Naegeli K, Hamilton T (2011) Do dissociating gas hydrates play a role in triggering submarine slope failures? A case study from the northern Cascadia margin. In: The 7th international conference on gas hydrates (ICGH 2011) (pp. 1–8). Edinburgh, Scotland, United Kingdom

  • Seol J, Lee H (2013) Natural gas hydrate as a potential energy resource: from occurrence to production. Korean J Chem Eng 30(4):771–786

    Article  Google Scholar 

  • Seol Y, Lei L, Choi JH, Jarvis K, Hill D (2019) Integration of triaxial testing and pore-scale visualization of methane hydrate-bearing sediments. Rev Sci Instrum 90(12):124504

    Article  Google Scholar 

  • Sharma SS, Fahey M (2003) Degradation of stiffness of cemented calcareous soil in cyclic triaxial tests. J Geotech Geoenviron Eng 129(7):619–629

    Article  Google Scholar 

  • Shen J, Chiu CF, Ng CWW, Lei GH, Xu J (2016) A state-dependent critical state model for methane hydrate-bearing sand. Comput Geotech 75:1–11

    Article  Google Scholar 

  • Sloan ED Jr, Koh CA (2007) Clathrate hydrates of natural gases. CRC Press

    Book  Google Scholar 

  • Soga K, Lee SL, Ng MYA, Klar A (2006) Characterization and engineering properties of Methane hydrate soils. 2591–2642

  • Song Y, Yu F, Li Y, Liu W, Zhao J (2010) Mechanical property of artificial methane hydrate under triaxial compression. J Nat Gas Chem 19(3):246–250

    Article  Google Scholar 

  • Song Y, Zhu Y, Liu W, Zhao J, Li Y, Chen Y, Shen Z, Lu Y, Ji C (2014) Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation. Mar Pet Geol 51:70–78

    Article  Google Scholar 

  • Song Y, Zhu Y, Liu W, Li Y, Lu Y, Shen Z (2016) The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments. J Petrol Sci Eng 147:77–86

    Article  Google Scholar 

  • Song B, Cheng Y, Yan C, Lyu Y, Wei J, Ding J, Li Y (2019a) Seafloor subsidence response and submarine slope stability evaluation in response to hydrate dissociation. J Nat Gas Sci Eng 65:197–211

    Article  Google Scholar 

  • Song Y, Luo T, Madhusudhan BN, Sun X, Liu Y, Kong X, Li Y (2019b) Strength behaviors of CH4 hydrate-bearing silty sediments during thermal decomposition. J Nat Gas Sci Eng 72:103031

  • Stern LA, Kirby SH, Durham WB (1996) Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science 273:1843–1848

    Article  Google Scholar 

  • Stoll RD, Ewing J, Bryan GM (1971) Anomalous wave velocities in sediments containing gas hydrates. J Geophys Res 76(8):2090–2094

    Article  Google Scholar 

  • Sultan N, Cochonat P, Foucher JP, Mienert J (2004) Effect of gas hydrates melting on seafloor slope instability. Mar Geol 213(1–4):379–401

    Article  Google Scholar 

  • Sultaniya AK, Priest JA, Clayton CRI (2015) Measurements of the changing wave velocities of sand during the formation and dissociation of disseminated methane hydrate. J Geophys Res: Solid Earth 120(2):778–789

    Article  Google Scholar 

  • Sultaniya A, Priest JA, Clayton CRI (2018) Impact of formation and dissociation conditions on the stiffness of hydrate-bearing sand. Can Geotech J 55(7):988–998

    Article  Google Scholar 

  • Sun ZM, Zhang J, Liu CL, Zhao SJ, Ye YG (2013) Experimental study on the mechanical properties of methane hydrate-bearing sediments. Appl Mech Mater 275–277:326–331

    Article  Google Scholar 

  • Sun J, Ning F, Li S, Zhang K, Liu T, Zhang L, Jiang G, Wu N (2015a) Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurizing: the effect of burden permeability. J Unconven Oil and Gas Resour 12:23–33

    Article  Google Scholar 

  • Sun X, Guo X, Shao L, Tang H (2015b) A thermodynamics-based critical state constitutive model for methane hydrate-bearing sediment. J Nat Gas Sci Eng 27:1024–1034

    Article  Google Scholar 

  • Sun X, Guo X, Shao L, Li Y (2016) Drucker-Prager elastoplastic constitutive model for methane hydrate-bearing sediment. Trans Tianjin Univ 22(5):441–450

    Article  Google Scholar 

  • Sun Y, Zhang X, Wu S, Wang L, Yang S (2018) Relation of submarine landslide to hydrate occurrences in Baiyun Depression, South China Sea. J Ocean Univ China 17(1):129–138

    Article  Google Scholar 

  • Sun X, Luo T, Wang L, Wang H, Song Y, Li Y (2019) Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl Energy 250:7–18

    Article  Google Scholar 

  • Takeya S, Honda K, Kawamura T, Yamamoto Y, Yoneyama A, Hirai Y, Hyodo K, Takeda T (2007) Imaging and density mapping of tetrahydrofuran clathrate hydrates by phase-contrast x-ray computed tomography. Appl Phys Lett 90(8):081920

  • Taylor CJ, Miller KT, Koh CA, Sloan ED Jr (2007) Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface. Chem Eng Sci 62(23):6524–6533

    Article  Google Scholar 

  • Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics. John Wiley and Sons, New York

    Google Scholar 

  • Tokunaga TK (2009) Hydraulic properties of adsorbed water films in unsaturated porous media. Water Resour Res 45(6):W06415

  • Tohidi B, Anderson R, Clennell B, Burgass RW, Biderkab AB (2011) Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology 29(9):867–870

    Article  Google Scholar 

  • Uchida S, Soga K, Yamamoto K (2012) Critical state soil constitutive model for methane hydrate soil. J Geophys Res Solid Earth 117(B3):B03209

  • Uchida S, Xie X, G, Leung Y F. (2016) Role of critical state framework in understanding geomechanical behavior of methane hydrate-bearing sediments. J Geophys Res: Solid Earth 121(8):5580–5595

    Article  Google Scholar 

  • Vadla ER (2015) An experimental study of methane hydrate growth and dissociation in porous media. Master's thesis The University of Bergen Norway

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Vanapalli SK, Fredlund DG, Pufahl DE, Clifton AW (1996) Model for the prediction of shear strength with respect to soil suction. Can Geotech J 33(3):379–392

    Article  Google Scholar 

  • Vanapalli SK, Fredlund DG, Pufahl DE (1999) The influence of soil structure and stress history on the soil-water characteristics of a compacted till. Geotechnique 49(2):143–159

    Article  Google Scholar 

  • Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38(1):231–252

    Article  Google Scholar 

  • Wang YH, Leung SC (2008) Characterization of cemented sand by experimental and numerical investigations. J Geotech Geoenviron Eng 134(7):992–1004

    Article  Google Scholar 

  • Waite WF, Winters WJ, Mason DH (2004) Methane hydrate formation in partially water saturated Ottawa sand. Am Miner 89:1202–1208

    Article  Google Scholar 

  • Waite WF, Kneafsey TJ, Winters WJ, Mason DH (2008) Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization. J Geophys Res 113(B7):B07102

  • Waite WF, Santamarina JC, Cortes DD, Dugan B, Espinoza DN, Germaine J, Jang J, Jung JW, Kneafsey TJ, Shin H, Soga K, Winters J, Yun TS (2009) Physical properties of hydrate-bearing sediments. Rev Geophys 47(4): RG4003

  • Wallmann K, Riedel M, Hong WL, Patton H, Hubbard A, Pape T, Hsu CW, Schmidt C, Johnson JE, Torres ME, Andreassen K, Berndt C, Bohrmann G (2018) Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat Commun 9(1):1–9

    Article  Google Scholar 

  • Warrier P, Khan MN, Srivastava V, Maupin CM, Koh CA (2016) Overview: nucleation of clathrate hydrates. J Chem Phys 145(21):211705

    Article  Google Scholar 

  • Wheeler SJ, Sivakumar V (1995) An elastoplastic critical state framework for unsaturated soil. Géotechnique 45(1):35–53

    Article  Google Scholar 

  • Winters WJ, Pecher IA, Waite WF, Mason DH (2004) Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. Am Miner 89:1221–1227

    Article  Google Scholar 

  • Winters WJ, Waite WF, Mason DH, Gilbert LY, Pecher IA (2007) Methane gas hydrate effect on sediment acoustic and strength properties. J Petrol Sci Eng 56(1–3):127–135

    Article  Google Scholar 

  • Winters WJ, Waite WF, Mason DH, Kumar P (2008) Physical properties of repressurized samples recovered during the 2006 national gas hydrate program expedition offshore India, paper 5531 presented at the 6th international conference on gas hydrates, Chevron, Vancouver, B. C., Canada, 6–10 July

  • Winters WJ, Wilcox-Cline RW, Long P, Dewri SK, Kumar P, Stern L, Kerr L (2014) Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems. Mar Pet Geol 58:139–167

    Article  Google Scholar 

  • Wu P, Li Y, Liu W, Liu Y, Wang D, Song Y (2020a) Microstructure evolution of hydrate-bearing sands during thermal dissociation and ensued impacts on the mechanical and seepage characteristics. J Geophys Res Solid Earth 125(5):e2019JB019103

  • Wu P, Li Y, Liu W, Sun X, Kong X, Song Y (2020b) Cementation failure behavior of consolidated gas hydrate-bearing sand. J Geophys Res Solid Earth 125(1):e2019JB018623

  • Wu P, Li Y, Sun X, Liu W, Song Y (2020c) Mechanical characteristics of hydrate-bearing sediment: a review. Energy Fuels 35(2):1041–1057

    Article  Google Scholar 

  • Wu Y, Hyodo M, Cui J (2020d) On the critical state characteristics of methane hydrate-bearing sediments. Mar Pet Geol 116:104342

    Article  Google Scholar 

  • Xu W, Germanovich LN (2006) Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach. J Geophys Res 111(B1):B01104

  • Xue K, Zhao J, Song Y, Liu W, Lam W, Zhu Y, Liu Y, Cheng C, Liu D (2012) Direct observation of THF hydrate formation in porous microstructure using magnetic resonance imaging. Energies 5(4):898–910

    Article  Google Scholar 

  • Yan RT, Liang WY, Wei CF, Wu EL (2017) A constitutive model for gas hydrae-bearing sediments considering hydrate occurring habits. Rock Soil Mech 38(1):10–19

    Google Scholar 

  • Yan R, Mu C, Zhang Q, Tian H, Zhou J, Wei C (2018a) A phase equilibrium model for hydrate in sediment accounting for pore capillary effect. Sci Sinica Phys Mech Astron 49(3):034607

  • Yan RT, Zhang BH, Yang DH, Li Y, Cheng XX, Wei CF (2018b) Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions. Rock Soil Mech 39(12):4421–4429

    Google Scholar 

  • Yang L, Zhao J, Liu W, Li Y, Yang M, Song Y (2015) Microstructure observations of natural gas hydrate occurrence in porous media using microfocus X-ray computed tomography. Energy Fuels 29(8):4835–4841

    Article  Google Scholar 

  • Yang L, Liu Y, Zhang H, Xiao B, Guo X, Wei R, Xu L, Sun L, Yu B, Leng S, Li Y (2019) The status of exploitation techniques of natural gas hydrate. Chin J Chem Eng 27(9):2133–2147

    Article  Google Scholar 

  • Yang ZJ, Zhou JZ, Chen Q, Wang YZ, Wei CF, Meng XC (2020) Triaxial test and constitutive model for hydrate-bearing clayey sand. J Yangtze River Sci Res Inst 37(12):139–145

    Google Scholar 

  • Yoneda J, Masui A, Tenma N, Nagao J (2013) Triaxial testing system for pressure core analysis using image processing technique. Rev Sci Instrum 84(11):114503

    Article  Google Scholar 

  • Yoneda J, Masui A, Konno Y, Jin Y, Egawa K, Kida M, Ito T, Nagao J, Tenma N (2015a) Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression. Mar Pet Geol 66:451–459

    Article  Google Scholar 

  • Yoneda J, Masui A, Konno Y, Jin Y, Egawa K, Kida M, Tenma N (2015b) Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough. Mar Pet Geol 66:471–486

    Article  Google Scholar 

  • Yoneda J, Jin Y, Katagiri J, Tenma N (2016) Strengthening mechanism of cemented hydrate-bearing sand at microscales. Geophys Res Lett 43(14):7442–7450

    Article  Google Scholar 

  • Yoneda J, Kida M, Konno Y, Jin Y, Morita S, Tenma N (2019) In situ mechanical properties of shallow gas hydrate deposits in the deep seabed. Geophys Res Lett 46(24):14459–14468

    Article  Google Scholar 

  • Yoo DG, Kang NK, Yi BY, Kim GY, Ryu BJ, Lee K, Lee GH, Riedel M (2013) Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea. Mar Pet Geol 47:236–247

    Article  Google Scholar 

  • Yu F, Song Y, Liu W, Li Y, Lam W (2011) Analyses of stress-strain behavior and constitutive model of artificial methane hydrate. J Petrol Sci Eng 77(2):183–188

    Article  Google Scholar 

  • Yun TS (2005) Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys Res Lett. 32(10):L10609

  • Yun TS, Santamarina JC (2011) Hydrate growth in granular materials: implication to hydrate-bearing sediments. Geosci J 15(3):265–273

    Article  Google Scholar 

  • Yun TS, Santamarina JC, Ruppel C (2007) Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J Geophys Res Solid Earth 112(B4):B04106

  • Zander T, Choi JC, Vanneste M, Berndt C, Dannowski A, Carlton B, Bialas J (2018) Potential impacts of gas hydrate exploitation on slope stability in the Danube deep-sea fan, Black Sea. Mar Pet Geol 92:1056–1068

    Article  Google Scholar 

  • Zhang XH, Lu XB, Zhang LM, Wang SY, Li QP (2012) Experimental study on mechanical properties of methane-hydrate-bearing sediments. Acta Mech Sin 28(5):1356–1366

    Article  Google Scholar 

  • Zhang XH, Luo DS, Lu XB, Liu LL, Liu CL (2017) Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation. Acta Mech Sin 34(2):266–274

    Article  Google Scholar 

  • Zhang X, Lu X, Li P (2018a) A comprehensive review of natural gas hydrate recovery methods. Sci Sinica Phys Mech Astron 49(3):034604

  • Zhang Y, Cai J, Li X, Chen Z, Yan K, Chen C (2018b) Dissociation behaviors of methane hydrate in marine sediments from the South China Sea under constant pressure. Sci Sinica Phys, Mech Astron 49(3):034611

    Article  Google Scholar 

  • Zhu Y, Chen C, Luo T, Song Y, Li Y (2022) Creep behaviors of methane hydrate-bearing sediments. Environ Geotech 9(4):199–299

Download references

Acknowledgements

This work was financially supported by the Key Research Program of the Institute of Geology and Geophysics, CAS under Grant No. IGGCAS-201903402, and National Natural Science Foundation of China under Grant Nos. 42141009, 41825018 and 41790442, 42107188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwen Qi.

Ethics declarations

Conflict of interest

I would like to declare on behalf of my co-authors that no conflict of interest exists in the manuscript and all the authors listed have approved the manuscript for submission and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Qi, S., Huang, X. et al. Hydrate morphology and mechanical behavior of hydrate-bearing sediments: a critical review. Geomech. Geophys. Geo-energ. Geo-resour. 8, 161 (2022). https://doi.org/10.1007/s40948-022-00461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-022-00461-8

Keywords

Navigation