Skip to main content
Log in

Relation of submarine landslide to hydrate occurrences in Baiyun Depression, South China Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Submarine landslides have been observed in the Baiyun Depression of the South China Sea. The occurrence of hydrates below these landslides indicates that these slope instabilities may be closely related to the massive release of methane. In this study, we used a simple Monte-Carlo model to determine the first-order deformation pattern of a gravitationally destabilizing slope. The results show that a stress concentration occurs due to hydrate dissociation on the nearby glide surface and on top of a gas chimney structure. Upon the dissolution of the gas hydrate, slope failure occurs due to the excess pore pressure generated by the dissociation of the gas hydrates. When gas hydrates dissociate at shallow depths, the excess pore pressure generated can be greater than the total stress acting at those points, along with the forces that resist sliding. Initially, the failure occurs at the toe of the slope, then extends to the interior. Although our investigation focused only on the contribution of hydrate decomposition to submarine landslide, this process is also affected by both the slope material properties and topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosi, C., and Crosta, G. B., 2006. Large sacking along major tectonic features in central Italian Alps. Engineering Geology, 83: 183–200.

    Article  Google Scholar 

  • Antobreh, A. A., and Krastel, S., 2006. Morphology, seismic characteristics and development of Cap Timiris canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region. Marine and Petroleum Geology, 23 (1): 37–59.

    Article  Google Scholar 

  • Babonneau, N., Savoye, B., Cremer, M., and Klein, B., 2002. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Marine and Petroleum Geology, 19 (4): 445–467.

    Article  Google Scholar 

  • Bang, N. L., Hornbach, M. J., Moore, G. F., and Park, J. O., 2010. Massive methane release triggered by seafloor erosion offshore southwestern Japan. Geology, 38 (11): 1019–1022.

    Article  Google Scholar 

  • Berndt, C., Costa, S., Canals, M., Camerlenghi, A., de Mol, B., and Saunders, M., 2012. Repeated slope failure linked to fluid migration: The Ana submarine landslide complex, Eivissa Channel, western Mediterranean Sea. Earth and Planetary Science Letters, 319–320: 65–74.

    Article  Google Scholar 

  • Berndt, C., Mienert, J., Vanneste, M., Bunz, S., and Bryn, S., 2005. Submarine slope-failure offshore Norway triggers rapid gas hydrate decomposition. In: Onshore-Offshore Relationships on the North Altlantic Margin. Wandas, B. T. G. E., et al., eds., Special Publication–Norwegian Petroleum Society. Elsevier, Amsterdam, 71–74.

    Google Scholar 

  • Bialias, A., Tapponnier, P., and Pautot, G., 1989. Constraints of sea beam data on crustal fabrics and seafloor spreading in the South China Sea. Earth and Planetary Science Letters, 95 (3–4): 307–320.

    Google Scholar 

  • Brown, H. E., Holbrook, W. S., Hornbach, M. J., and Nealon, J., 2006. Slide structure and role of gas hydrate at the northern boundary of the Storegga slide, offshore Norway. Marine Geology, 229: 179–186.

    Article  Google Scholar 

  • Canals, M., Danovaro, R., Heussner, S., Lykousis, V., Puig, P., Trincardi, P., Calafat, A. M., de Madron, X. D., Palanques, A., and Sanchez-Vidal, A., 2009. Cascades in Mediterranean submarine grand canyons. Oceanography, 22: 26–43.

    Article  Google Scholar 

  • Chand, S., Thorsnes, T., Rise, L., Brunstad, H., Stoddart, D., Boe, R., Lagstad, P., and Svolsbru, T., 2012. Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate accumulation. Earth and Planetary Science Letters, 331–332: 305–314.

    Article  Google Scholar 

  • Chemenda, A. I., Bois, T., Bouissou, S., and Tric, E., 2009. Numerical modeling of the gravity-induced destabilization of a slope: The example of the La Clapiere landslide, southern France. Geomorphology, 109: 86–93.

    Article  Google Scholar 

  • Chen, D. X., Wang, X. J., Völker, D., Wu, S. G., Wang, L., Li, Q. P., Zhu, Z. Y., Li, C. L., Qin, Z. L., and Sun, Q. L., 2016. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea. Marine and Petroleum Geology, 77: 1125–1139.

    Article  Google Scholar 

  • Crossey, L. J., Ficher, T. P., Jonathan Patchett, P., Karlstrom, K. E., Hilton, D. R., Newell, D. L., Huntoon, P., Reynolds, A. C., and de Leeuw, G. A. M., 2006. Dissected hydrologic system at the grand canyon: Interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology, 34: 25–28.

    Article  Google Scholar 

  • Davies, R. J., and Clarke, A. L., 2010. Methane recycling between hydrate and critically pressured stratigraphic traps, offshore Mauritania. Geology, 38 (11): 963–966.

    Article  Google Scholar 

  • Davies, R. J., Thatcher, K. E., Mathias, S. A., and Yang, J. X., 2012. Deepwater canyons: An escape route for methane sealed by methane hydrate. Earth and Planetary Science Letters, 323–324: 72–78.

    Article  Google Scholar 

  • Dickens, G. R., 2001. The potential volume of oceanic methane hydrates with variable external conditions. Organic Geochemistry, 32: 1179–1193.

    Article  Google Scholar 

  • Dondurur, D., Kucuk, H. M., and Cifci, G., 2013. Quaternary mass wasting on the western Black Sea margin, offshore of Amasra. Global and Planetary Change, 203: 248–260.

    Article  Google Scholar 

  • Dong, D. D., Wu, S. G., Zhang, G. C., and Yuan, S. Q., 2008. Rifting process and formation mechanisms of syn-rift stage prolongation in the deepwater basin, northern South China Sea. Chinese Science Bulletin, 53 (23): 3715–3725.

    Article  Google Scholar 

  • Duchkov, A. D., Istomin, V. E., and Sokolova, L. S., 2012. A geothermal method for detecting gas hydrates in the bottom sediments of water basins. Russian Geology and Geophysics, 53: 704–711.

    Article  Google Scholar 

  • Francisca, F., Yun, T. S., Ruppel, C., and Santamarina, J. C., 2005. Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. Earth and Planetary Science Letters, 237 (3–4): 924–939.

    Article  Google Scholar 

  • Fuh, C. S., Chern, C. C., Liang, S. C., Yang, Y. L., Wu, S. H., Chang, T. Y., and Lin, J. Y., 2009. The biogenic gas potential of the submarine canyon systems of Plio–Peistocene foreland basin, southwestern Taiwan. Marine and Petroleum Geology, 26 (7): 1087–1099.

    Article  Google Scholar 

  • Gee, M. J. R., Uy, H. S., Warren, J., Morley, C. K., and Lambiase, J. J., 2007. The Brunei slide: A giant submarine landslide on the north west Borneo margin revealed by 3D seismic data. Marine Geology, 246: 9–23.

    Article  Google Scholar 

  • Gingele, F. X., Deckker, P. D., and Hillenbrand, C. D., 2004. Late Quaternary terrigenous sediments from the Murray canyons area, offshore south Australia and their implications for sea level change, palaeoclimate and palaeodrainage of the Murraye Darling Basin. Marine Geology, 212: 183–197.

    Article  Google Scholar 

  • Grozic, J. L. H., 2010. Interplay between gas hydrates and submarine slope failure. In: Submarine Mass Movements and Their Conquesence. Mosher, D. C., et al., eds., Springer, Netherlands, 11–30.

    Google Scholar 

  • Grozic, J. L. H., Nadim, F., and Kvalstad, T. J., 2005. On the undrained shear strength of gassy clays. Computers and Geotechnics, 32 (7): 483–490.

    Article  Google Scholar 

  • Haacke, R. R., Hyndman, R. D., Park, K. P., Yoo, D. G., Stoian, I., and Schmidt, U., 2009. Migration and venting of deep gases into the ocean through hydrate-choked chimneys offshore Korea. Geology, 37 (6): 531–534.

    Article  Google Scholar 

  • He, Y., Zhong, G. F., Wang, L. L., and Kuang, Z. G., 2014. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea. Marine and Petroleum Geology, 57: 546–560.

    Article  Google Scholar 

  • Helmstetter, A., Sornette, D., Grasso, J. R., Andersen, J. V., Gluzman, S., and Pisarenko, V., 2004. Slider-block friction model for landslides: Application to Vaiont and La Clapiere landslides. Journal of Geophysical Research, 109: B02409.

    Article  Google Scholar 

  • Hermanns, R. L., Blikra, L. H., Naumann, M., Nilsen, B., Panthi, K. K., Stromeyer, D., and Longva, O., 2006. Examples of multiple rock-slope collapses from kofels (Otz valley, Austria) and western Norway. Engineering Geology, 83: 94–108.

    Article  Google Scholar 

  • Hornbach, M. N., Saffer, D. M., and Holbrook, W. S., 2004. Critically pressured free-gas reservoirs below gas hydrate provinces. Nature, 427: 142–144.

    Article  Google Scholar 

  • Jobe, Z. R., Lowe, D. R., and Uchytil, S. J., 2011. Two fundamentally different types of submarine canyons along the continental margin of equatorial Guinea. Marine and Petroleum Geology, 28 (3): 843–860.

    Article  Google Scholar 

  • Kim, Y. G., Lee, S. M., Jin, Y. K., Baranov, B., Obzhirov, A., Salomatin, A., and Shoji, H., 2013. The stability of gas hydrate field in the northeastern continental slope of Sakhalin Island, Sea of Okhotsk, as inferred from analysis of heat flow data and its implications for slope failures. Marine and Petroleum Geology, 45: 198–207.

    Article  Google Scholar 

  • Kollla, V., Bourges, P., Urruty, J. M., and Safa, P., 2001. Evolution of deepwater Tertiary sinuous channels offshore, Angola (West Africa) and implications to reservoir architecture. AAPG Bulletin, 85: 1373–1405.

    Google Scholar 

  • Kwon, T. H., Lee, K. R., Cho, G. C., and Lee, J. Y., 2011. Geotechnical properties of deep oceanic sediments recovered from the hydrate occurrence regions in the Ulleung Basin, East Sea, offshore Korea. Marine and Petroleum Geology, 28 (10): 1870–1883.

    Article  Google Scholar 

  • Lafuerza, S., Sultan, N., Canals, M., Lastras, G., Cattaneo, A., Frigola, J., Costa, S., and Berndt, C., 2012. Failure mechanisms of Ana slide from geotechnical evidence, Eivissa Channel, western Mediterranean Sea. Marine Geology, 307–310: 1–21.

    Article  Google Scholar 

  • Liu, C. L., Ye, Y. G., Meng, Q. G., He, X. L., Lu, H. L., Zhang, J., Liu, J., and Yang, S. X., 2012. The characteristics of gas hydrates recovered from Shenhu area in the South China Sea. Marine Geology, 307–310: 22–27.

    Article  Google Scholar 

  • Liu, F., Wu, S. G., and Sun, Y. B., 2010. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation. Chinese Journal of Geophysics, 53 (4): 946–953 (in Chinese with English abstract).

    Google Scholar 

  • Lüdmann, T., Wong, H. K., and Wang, P. X., 2001. Plio–Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 172 (3–4): 331–358.

    Article  Google Scholar 

  • Marcato, G., Mantovani, M., Pasuto, A., Zabuski, L., and Borgatti, L., 2012. Monitoring, numerical modeling and hazard mitigation of the Moscardo landslide (eastern Italian Alps). Engineering Geology, 128: 95–107.

    Article  Google Scholar 

  • Massion, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G. P., and Lovholt, F., 2006. Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society, A364: 2009–2039.

    Article  Google Scholar 

  • McConnell, D. R., Zhang, Z. J., and Boswell, R., 2012. Review of progress in evaluating gas hydrate drilling hazards. Marine and Petroleum Geology, 34 (1): 209–223.

    Article  Google Scholar 

  • Mienert, J., Vanneste, M., Bunz, S., Andreassen, K., Haflidason, H., and Sejrup, H. P., 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga slide. Marine and Petroleum Geology, 22 (1–2): 233–244.

    Article  Google Scholar 

  • Nakajima, T., Kakuwa, Y., Yasudomi, Y., Itaki, T., Motoyama, I., Tomiyama, T., Machiyama, H., Katayama, H., Okitsu, O., Morita, S., Tanahashi, M., and Matsumoto, R., 2014. Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan. Journal of Asian Earth Sciences, 90: 228–242.

    Article  Google Scholar 

  • Nixon, M. F., 2005. Influence of gas hydrates on submarine slope stability. Master thesis. University of Calagary, Alberta.

    Google Scholar 

  • Nixon, M. F., and Grozic, J. L. H., 2007. Submarine slope failure due to gas hydrate dissociation: A preliminary quantification. Canadian Geotechnical Journal, 44 (3): 314–325.

    Article  Google Scholar 

  • Owen, M., Day, S., and Maslin, M., 2007. Late Pleistocene submarine mass movements: Occurrence and causes. Quaternary Science Reviews, 26: 958–978.

    Article  Google Scholar 

  • Pang, X., Chen, C. M., Peng, D. J., Zhu, M., Shu, Y., He, M., Shen, J., and Liu, B. J., 2007. Sequence stratigraphy of deepwater fan system of Pearl River, South China Sea. Earth Science Frontiers, 14 (1): 220–229.

    Article  Google Scholar 

  • Pang, X., Chen, C. M., Wu, M. S., He, M., and Wu, X. J., 2006. The Pearl River deep-water fan systems and significant geological events. Advances in Earth Science, 21 (8): 793–799 (in Chinese with English abstract).

    Google Scholar 

  • Paull, C. K., Brewer, P. G., Ussler, W., Peltzer, E. T., Rehder, G., and Clague, D., 2003. An experiment demonstrating that marine slumping is a mechanism to transfer methane from seafloor gas hydrate deposits into the upper ocean and atmosphere. Geophysical Research Letters, 22: 198–203.

    Google Scholar 

  • Peakall, J., McCaffrey, W. D., and Kneller, B., 2000. A process model for the evolution, morphology and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70: 434–448.

    Article  Google Scholar 

  • Peng, D. J., Pang, X., Chen, C. M., Zhu, M., Huang, X. L., and Shu, Y., 2006. The characteristics and controlling factors for the formation of deep-water fan system in South China Sea. Acta Sedimentologica Sinica, 24 (1): 10–18 (in Chinese with English abstract).

    Google Scholar 

  • Popescua, I., Lericolais, G., Paninc, N., Normand, A., Dinu, C., and Drezen, E. L., 2004. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Marine Geology, 206: 249–265.

    Article  Google Scholar 

  • Riedel, M., Collett, T. S., and Shankar, U., 2011. Documenting channel features associated with gas hydrates in the Krishna- Godavari Basin, offshore India. Marine Geology, 279 (1–4): 1–11.

    Article  Google Scholar 

  • Shankar, U., Sain, K., and Riedel, M., 2012. Geothermal modeling for the base of gas hydrate stability zone and saturation of gas hydrate in the Krishna-Godavari Basin, eastern Indian Margin. Journal Geological Society of India, 79: 199–209.

    Article  Google Scholar 

  • Shepard, F. P., 1973. Submarine Geology. Harper & Row Publication, New York, 517pp.

    Google Scholar 

  • Shepard, F. P., 1981. Submarine canyons: Multiple causes and long-time persistence. AAPG Bulletin, 65 (6): 1062–1077.

    Google Scholar 

  • Sloan, E. D., 1998. Clathrate Hydrates of Natural Gas. Marcel Dekker, Inc., New York, 641pp.

    Google Scholar 

  • Stead, D., Eberhardt, E., and Coggan, J. S., 2006. Developments in the characterization of complex rock slope deformation and failure using numerical modeling techniques. Engineering Geology, 83: 217–235.

    Article  Google Scholar 

  • Sultan, N., Cochonat, P., Foucher, J. P., and Mienert, J., 2004. Effect of gas hydrates melting on seafloor slope instability. Marine Geology, 213: 379–401.

    Article  Google Scholar 

  • Sun, Q. L., Alves, T., Xie, X., He, J. X., Li, W., and Ni, X. L., 2016. Free gas accumulations in basal shear zones of masstransport deposits (Pearl River Mouth Basin, South China Sea): An important geohazard on continental slope basins. Marine and Petroleum Geology, 81: 17–32.

    Article  Google Scholar 

  • Sun, Q. L., Wu, S. G., Cartwright, J., and Dong, D. D., 2012a. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 315-318 (15): 1–14.

    Article  Google Scholar 

  • Sun, Y. B., Wu, S. G., Dong, D. D., Ludmann, T., and Gong, Y. H., 2012b. Gas hydrates associated with gas chimneys in finegrained sediments of the northern South China Sea. Marine Geology, 311–314: 32–40.

    Article  Google Scholar 

  • Taylor, B., and Hayes, D. E., 1983. Origin and history of the South China Sea Basin. In: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, Geophysical Monograph Series. Hayes, D. E., ed., American Geophysical Union, Washington, D C, 23–56.

    Chapter  Google Scholar 

  • Tinivella, U., and Giustiniani, M., 2012. Variations in BSR depth due to gas hydrate stability versus pore pressure. Global and Planetary Change, 100: 119–128.

    Article  Google Scholar 

  • van Asch, T. W. J., Malet, J. P., van Beek, L. P. H., and Amitrano, D., 2007. Techniques, issues and advances in numerical modeling of landslide hazard. Bulletin de la Societe Geologique de France, 178: 65–88.

    Article  Google Scholar 

  • Wang, L., Wu, S. G., Li, Q. P., Wang, D. W., and Fu, S. Y., 2014. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River canyon, northern South China Sea. Geo-Marine Letters, 34: 327–343.

    Article  Google Scholar 

  • Wang, X. J., Hutchinson, D. R., Wu, S. G., Yang, S. X., and Guo, Y. Q., 2011a. Elavated gas hydrate saturations within silt and silty-clay sediments in the Shenhu area, South China Sea. Journal of Geophysical Research, 116: 1–18.

    Google Scholar 

  • Wang, X. J., Wu, S. G., Lee, M., Guo, Y. Q., Yang, S. X., and Liang, J. Q., 2011b. Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu area, South China Sea. Marine and Petroleum Geology, 28 (9): 1625–1633.

    Article  Google Scholar 

  • Wang, X. J., Collett, T. S., Lee, M. W., Yang, S. X., Guo, Y. Q., and Wu, S. G., 2014a. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea. Marine Geology, 357: 272–292.

    Article  Google Scholar 

  • Wang, X. J., Lee, M. W., Collett, T. S., Yang, S. X., Guo, Y. Q., and Wu, S. G., 2014b. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea. Marine and Petroleum Geology, 51: 298–306.

    Article  Google Scholar 

  • Wang, X. J., Qiang, J., Collett, T. S., Shi, H. S., Yang, S. X., Yan, C. Z., Li, Y. P., Wang, Z. Z., and Chen, D. X., 2015. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea. Interpretation, 3 (4): 2015–0020.1.

    Article  Google Scholar 

  • Wu, N. Y., Yang, S. X., Wang, H. B., Liang, J. Q., Gong, Y. H., Lu, Q., Wu, D. D., and Guan, H. X., 2009. Gas hydratebearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, northern South China Sea. Chinese Journal of Geophysics, 52 (6): 1641–1650 (in Chinese with English abstrct).

    Google Scholar 

  • Wu, N. Y., Yang, S. X., Zhang, H. Q., Liang, J. Q., Wang, H. B., and Lu, J. A., 2010. Gas hydrate system of Shenhu area, northern South China Sea: Wireline logging, geochemistrical results and preliminary resources estimates. Offshore Technology Conference. Houston, USA.

    Google Scholar 

  • Wu, N. Y., Zhang, H. Q., Yang, S. X., Zhang, G. X., Liang, J. Q., Lu, J. A., Su, X., Schultheiss, P., Holland, M., and Zhu, Y. H., 2011a. Gas hydrate system of Shenhu area, northern South China Sea: Geochemical results. Journal of Geological Research, 2011: 1–10.

    Google Scholar 

  • Wu, S. G., Wong, H. K., and Lüdmann, T., 1999. Gravity-driven sedimentation on the northwestern continental slope in the South China Sea: Results from high-resolution seismic data and piston cores. Chinese Journal of Oceanology and Limnology, 17 (2): 155–169.

    Article  Google Scholar 

  • Wu, S. G., Qin, Z. L., Wang, D. W., Peng, X. C., Wang, Z. J., and Yao, G. S., 2011b. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea. Chinese Journal of Geophysics, 54 (12): 3184–3195 (in Chinese with English absract).

    Google Scholar 

  • Xie, X. N., Li, S. T., Dong, W. L., and Hu, Z. L., 2001. Evidence for hot fluid flow along faults near diapiric structure of the Yinggehai basins, South China Sea. Marine and Petroleum Geology, 18 (6): 715–728.

    Article  Google Scholar 

  • Yu, H. S., 1990. The Pearl River Mouth Basin: A rift basin and its geodynamic relationship with the southeastern Eurasian margin. Tectonophysics, 183: 177–186.

    Article  Google Scholar 

  • Yun, T. S., Narsilio, G. A., and Santamarina, J. C., 2006. Physical characterization of core samples recovered from Gulf of Mexico. Marine and Petroleum Geology, 23 (9–10): 893–900.

    Article  Google Scholar 

  • Zhang, G. C., Mi, L. J., Wu, S. G., and Braaksma, H., 2007. Deepwater area–The new prospecting targets of northern continental margin of South China Sea. Acta Petrolei Sinica, 28 (2): 15–21 (in Chinese with English abstract).

    Google Scholar 

  • Zhou, M. L., Soga, K., Xu, E., and Yamamoto, K., 2014. Numerical study on the history matching of eastern Nankai Trough hydrate gas production test. The 8th International conference on Gas Hydrates. Beijing, China, 1–12.

    Google Scholar 

  • Zhu, M. Z., Graham, S., Pang, X., and McHargue, T., 2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Marine and Petroleum Geology, 27 (1): 307–319.

    Article  Google Scholar 

  • Zitter, T. A. C., Grall, C., Henry, P., Ozeren, M. S., Cagatay, M. N., Sengor, A. M. C., Gasperini, L., de Lepinay, B. M., and Geli, L., 2012. Distribution, morphology and triggers of submarine mass wasting in the Sea of Marmara. Marine Geology, 329–331: 58–74.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Science Foundation of China (No. 41306037) and the National Science and Technology Works Special Project of the China Geological Survey (No. DD20160213), and Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13). We acknowledge the China Marine Geological Survey for its permission to release the data. We are grateful to the anonymous reviewers for their insightful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, X., Wu, S. et al. Relation of submarine landslide to hydrate occurrences in Baiyun Depression, South China Sea. J. Ocean Univ. China 17, 129–138 (2018). https://doi.org/10.1007/s11802-018-3458-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3458-1

Key words

Navigation